Marine Biology

, Volume 116, Issue 4, pp 583–591 | Cite as

Effects of temperature and salinity acclimation of adults on larval survival, physiology, and early development of Lytechinus variegatus (Echinodermata: Echinoidea)

  • Richard A. Roller
  • William B. Stickle


Larval survival and developmental rates of Lytechinus variegatus (Lamarck) were determined as a function of temperature and salinity in two experiments by: (1) directly transferring fertilized eggs to 35, 30, 27.5, 25, 20, 15, and 10‰S seawater at 18 and 23°C, and (2) acclimation of adult sea urchins to the conditions described above for 1 to 4 wk prior to spawning. Developmental rates and percent survival of larvae prior to metamorphosis decreased at salinities below 35‰ (Q10 values for metamorphosis=0.380 to 0.384). Temperature and salinity significantly (P<0.05) affected metabolic rates of L. variegatus plutei. These results show that L. variegatus larvae are stenohaline when compared to larvae of other echinoderm species. LC50 values (‰S), developmental rates, and survival to metamorphosis indicate that acclimation of adult sea urchins to lower salinity prior to spawing and fertilization does not enhance development or survival of embryos exposed to low salinity.


Metabolic Rate Early Development Percent Survival Larval Survival Developmental Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barrett, B. B. (1971). Cooperative Gulf of Mexico estuarine inventory and study. Louisiana. Phase II, hydrology, and Phase III, sedimentology. Louisiana Wildlife and Fisheries Commission, New OrleansGoogle Scholar
  2. Bayne, B. L. (1985). Responses to environment stress: tolerance, resistance and adaption. In: Gray, J. S., Christiansen, M. E. (eds) Marine biology of polar regions and effects of stress on marine organisms. John Wiley & Sons Ltd, London, p. 331–349Google Scholar
  3. Bayne, B. L., Moore, M. N., Widdows, J., Livingstone, D. R., Salkeld, P. (1979). Measurements of the responses of individuals to environmental stress and pollution: studies with bivalve molluscs. Phil Trans. R. Soc. 286: 563–581Google Scholar
  4. Binyon, J. (1961). Salinity tolerance and permeability to water of the starfish Asterias rubens L. J. mar. biol. Ass. U.K. 41: 161–174Google Scholar
  5. Binyon, J. (1966) Salinity tolerance and ionic regulation. In: Boolootion, R. A. (ed.) Physiology of Echinodermata. Interscience Publishers, New York, p. 359–377Google Scholar
  6. Binyon, J. (1972). Physiology of Echinodermata. Pergamon Press Ltd, OxfordGoogle Scholar
  7. Calabrese, A., Davis, H. C. (1970). Tolerance and requirements of embryos and larvae of bivalve mollusks. Helgoländer wiss. Meeresunters. 20: 553–564Google Scholar
  8. Collias, E. E., McGray, N., Barnes, C. A. (1974). Atlas of physical and chemical properties of Puget Sound and its approaches. University of Washington Press, SeattleGoogle Scholar
  9. Drouin, G., Himmelman, J. H., Beland, P. (1985). Impact of tidal salinity fluctuations on echinoderm and mollusc populations. Can. J. Zool. 63: 1377–1387Google Scholar
  10. Finney, D. J. (1971). Probit analysis. 3rd edn. Cambridge University Press, LondonGoogle Scholar
  11. Fuhrman, J., Fuhrman, A. (1959). Oxygen consumption of animals and tissues as a function of temperature. J. gen Physiol. 42: 715–722Google Scholar
  12. Gezelius, G. (1963). Adaptation of the sea urchin Psammechinus miliaris to different salinities. Zool. Bidr. Upps. 35: 329–337Google Scholar
  13. Grasshoff, H., Johannsen, H. (1972) A new sensitive and direct method for the automatic determination of ammonia in seawater. J. Cons. int. Explor. Mer 34: 516–521Google Scholar
  14. Greenwood, P. J., Bennett, T. (1981). Some effects of temperaturesalinity combinations on the early development of the sea urchin Parechinus angulosus (Leske). Fertilization. J. exp. mar. Biol. Ecol. 51: 119–131Google Scholar
  15. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (eds.) Culture in marine animals. Plenum Press, New York, p. 29–30Google Scholar
  16. Hendler, G. L. (1973). Northwest Atlantic amphiurid brittlestars, Amphioplus abditus (Verrill), Amphioplus macilentus (Verrill), and Amphioplus sepultus n. sp. (Ophiuroidea: Echinodermata): systematics, zoologeography, annual periodicities and larval adaptations. Ph.D. disseration. University of Connecticut, StorrsGoogle Scholar
  17. Hendler, G. L. (1977). Development of Amphioplus abditus (Verrill) (Echinodermata, Ophiuroidea): I. Larval biology. Biol. Bull. mar. biol. Lab., Woods Hole 152: 51–63Google Scholar
  18. Hewatt, W. G. (1951). Salinity studies in Louisiana coastal embayments west of the Mississippi River. Final Report of Project Nine. Texas A&M Research Foundation, College StationGoogle Scholar
  19. Himmelman, J. H., Lavergne, Y., Axelsen, F., Cardinal, A., Bourget, E. (1983). Sea urchins in the St. Lawrence estuary Canada, their abundance size structure and suitability for commercial exploitation. Can. J. Fish. aquat. Sciences 40: 474–486Google Scholar
  20. Hoar, W. S. (1969). Reproduction. In: Hoar, W. S., Randall, D. J. (eds.), Fish physiology. Academic Press, New York, p. 1–72Google Scholar
  21. Johns, D. M. (1981 a). Physiological studies on Cancer irroratus larvae. II. Effects of temperature and salinity on survival, development rate and size. Mar. Ecol. Prog. Ser. 5: 75–83Google Scholar
  22. Johns, D. M. (1981 b). Physiological studies on Cancer irroratus larvae. II. Effects of temperature and salinity on physiological performance. Mar. Ecol. Prog. Ser. 6: 309–315Google Scholar
  23. Johns, D. M. (1982). Physiological studies on Cancer irroratus larvae. III. Effects of temperature and salinity on the partitioning of energy resources during development. Mar. Ecol. Prog. Ser. 8: 75–85Google Scholar
  24. Klinger, T. S., Hsieh, H. L., Pangallo, R. A., Chen, C. P., Lawrence, J. M. (1986). The effects of temperature on feeding, digestion, and absorption of Lytechinus variegatus (Lamarck (Echinodermata: Echinoidea). Physiol. Zoöl. 59: 332–336Google Scholar
  25. Kozloff, E. N. (1974). Key to the marine invertebrates of Puget Sound, the San Juan Archipelago, and adjacent regions. University of Washington Press, SeattleGoogle Scholar
  26. Laughlin, R. (1983). The effects of temperaure and salinity on larval growth of the horseshoe crab Limulus polyphemuns. Biol. Bull. mar. biol. Lab., Woods Hole 164: 93–103Google Scholar
  27. Lawrence, J. M. (1975). The effect of temperature-salinity combinations on functional well-being of adult Lytechinus variegatus (Lamarck) (Echinodermata, Echinoidea). J. exp. mar. Biol. Ecol. 18: 271–275Google Scholar
  28. Loosanoff, V. L. (1945). Effect of seawater of reduced salinities upon the starfish Asterias forbesi of Long Island Sound. Trans. Conn. Acad. Arts Sci. 36: 813–833Google Scholar
  29. Lucas, J. S., Costlow, J. D., Jr. (1979). Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Mar. Biol. 51: 111–117Google Scholar
  30. Lucke, B., McCutcheon, M. (1932). The living cell as an asmotic system and its permeability to water. Physiol. Rev. 12: 68–139Google Scholar
  31. MacInnes, J. R., Calabrese, A. (1979). Combined effects of salinity, temperature, and copper on embryos and early larvae of the American oyster, Crassostrea virginica. Archs envir. Contam. Toxic. 8: 553–562Google Scholar
  32. Mangum, C. F., Sassaman, C. (1969). Temperature sensitivity of active and resting metabolism in a polychaetous annelid. Comp. Biochem. Physiol. 30: 111–116Google Scholar
  33. Moore, H. B., Lopez, N. N. (1972). Factors controlling variation in the seasonal spawning pattern of Lytechinus variegatus. Mar. Biol. 14: 275–280Google Scholar
  34. Mortensen, T. H. (1943). Monograph of Echinoidea III. 2. Camarodonta. I. Orthopsidae, Glyphooyphidae, Temnopleuridae and Toxopneustidae. C. A. Reitzel, CopenhangenGoogle Scholar
  35. Oglesby, L. C. (1981). Volume regulation in acquatic invertebrates. J. exp. Zool. 215: 289–301Google Scholar
  36. Pagett, R. M. (1978). Some physiological and ecological aspects of the Ophiuroidea. Ph.D. thesis. University of London, LondonGoogle Scholar
  37. Petersen, J. A., Almeida, A. M. (1976). Effects of salinity and temperature on the development and survival of the echinoids Arbacia, Echinometra and Lytechinus. Thalassia jugosl. 12: 297–298Google Scholar
  38. Prosser, C. L. (1986). Adaptational biology: molecules to organisms. John Wiley & Sons, New YorkGoogle Scholar
  39. Roller, R. A., Stickle, W. B. (1985). Effects of salinity on larval tolerance and early developmental rates of four species of echinoderms. Can. J. Zool. 63: 1531–1538Google Scholar
  40. Roller, R. A., Stickle, W. B. (1989). Temperature and salinity effects on the intracapsular development, metabolic rates, and survival to hatching of Thais haemastoma (Gray) (Prosobranchia: Muricidae) under laboratory conditions. J. exp. mar. Biol. Ecol. 125: 235–251Google Scholar
  41. Roller, R. A., Stickle, W. B. (1993). Does salinity acclimation affect the larval tolerance, physiology, and early development of Strongylocentrotus droebachiensis (O. F. Müller, 1776) and S. pallidus (G. O. Sars, 1871) (Echinodermata: Echinoidea)? (In preparation)Google Scholar
  42. Sabourin, T. D., Stickle, W. B. (1981). Effects of salinity on respiration and nitrogen excretion in two species of echinoderms. Mar. Biol. 65: 91–99Google Scholar
  43. SAS Institute Inc. (1985 a). SAS for linear models — a guide to the ANOVA and GLM procedures. SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  44. SAS Institute Inc. (1985 b). SAS users guide: statistics. Version 5 edn. SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  45. Schmidt-Nielsen, K. (1980). Animal physiology: adaptation and environment. Cambridge University Press, LondonGoogle Scholar
  46. Serafy, K. (1973). Variation in the polytypic sea urchin Lytechinus variegatus (Lamarck, 1816) in the western Atlantic (Echinodermata; Echinoidea). Bull. mar. Sci. 23: 525–534Google Scholar
  47. Serafy, K. (1979). Echinoids (Echinoidea: Echinodermata). Mem. Hourglass Cruises. 5: 1–120 (Fla mar. Res. Lab., St Petersburg)Google Scholar
  48. Shirley, T. C., Stickle, W. B. (1982). Responses of Leptasterias hexactis (Echinodermata: Asteroidea) to low salinity. I. Survival, activity, feeding, growth and absorption efficiency. Mar. Biol. 69: 147–154Google Scholar
  49. Silverstone, H. (1957). Estimating the logistic curve. J. Am. statist. Ass. 52: 567–577Google Scholar
  50. Snedecor, G. W., Cochran, W. G. (1980). Statistical methods. 7th ed. Iowa State University Press, Ames, p. 290–291Google Scholar
  51. Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. 2nd ed. W. H. Freeman & Co., New YorkGoogle Scholar
  52. Solórzano, L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 14: 799–801Google Scholar
  53. Stancyk, S. E., Shaffer, P. L. (1977). The salinity tolerance of Ophiothrix angulata (Say) (Echinodermata: Ophiuroidea) in latitudinally separate populations. J. exp. mar. Biol. Ecol. 29: 35–43Google Scholar
  54. Steel, R. G. D., Torrie, J. H. (1980). Principles and procedures of statistics: a biomedical approach. McGraw-Hill Inc., New YorkGoogle Scholar
  55. Stickle, W. B. (1985). Effects of environmental factor gradients on scope for growth in several species of carnivorous marine invertebrates. In: Gray, J. S., Christiansen, M. E. (eds.) Marine biology of polar regions and effects of stress on marine organisms. John Wiley & Sons Ltd., London, p. 601–616Google Scholar
  56. Stickle, W. B., Denoux, G. J. (1976). Effects of in situ tidal salinity fluctuations on osmotic and ionic composition of body fluid in Southeastern Alaska rocky intertidal fauna. Mar. Biol. 37: 125–135Google Scholar
  57. Stickle, W. B., Diehl, W. J. (1987). Effects of salinity on echinoderm. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm studies. II. A. A. Balkema, Rotterdam, p. 235–285Google Scholar
  58. Strathmann, M. (1987). Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, SeattleGoogle Scholar
  59. Strathmann, R. (1978). Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. exp. mar. Biol. Ecol. 34: 23–27Google Scholar
  60. Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis. 2nd edn. Bull. Fish. Res. Bd Can. 167: 1–310Google Scholar
  61. Thomas, L. P. (1961). Distribution and salinity tolerance in the amphiurid brittlestar Ophiophragmus filograneus (Lyman 1875). Bull. mar. Sci. Gulf Caribb. 11: 158–160Google Scholar
  62. Thomson, R. E. (1981). Oceanography of the British Columbia Coast. Department of Fisheries and Oceans. Ottawa, OntarioGoogle Scholar
  63. Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole 25: 1–45Google Scholar
  64. Turner, R. L., Meyer, C. E. (1980). Salinity tolerance of the brackish-water echinoderm Ophiophragmus filograneus (Ophiuroidea). Mar. Ecol. Prog. Ser. 2: 249–256Google Scholar
  65. Valen, E. (1958). Oxygen consumption in relation to temperature in some poikilotherms. Acta physiol. scand. 42: 358–362Google Scholar
  66. Valentine, J. F., Heck, K. L. (1991). The role of sea urchin grazing in regulating subtropical seagrass meadows: evidence from field manipulations in the northern Gulf of Mexico. J. exp. mar. Biol. Ecol. 154: 215–230Google Scholar
  67. Vernberg, W. B., Vernberg, F. J. (1972). Environmental physiology of marine animals. Springer-Verlag, New YorkGoogle Scholar
  68. Watts, S. A., Scheibling, R. E., Marsh, A. G., McClintock, J. B. (1982). Effects of temperature and salinity on larval development of sibling species of Echinaster (Echinodermata: Asteroidea) and their hybrids. Biol. Bull. mar. biol. Lab., Woods Hole 163: 348–354Google Scholar
  69. Widdows, J., Phelps, D. K., Galloway, W. (1981). Measurement of physiological condition of mussels transplanted along a pollution gradient in Narragansett. Bay. Mar. envirl Res. 4: 181–194Google Scholar
  70. Wieser, W. (1973). Temperature relations of ectotherms: a speculative review. In: Wieser, W. (ed.) Effects of temperature on octothermic organisms. Springer-Verlag, New York, p. 1–23Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Richard A. Roller
    • 1
  • William B. Stickle
    • 1
  1. 1.Department of Zoology and PhysiologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations