Marine Biology

, Volume 116, Issue 4, pp 565–570 | Cite as

Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton

  • A. Malej
  • J. Faganeli
  • J. Pezdič


In our field study we analyzed the C and H isotopic and biochemical (C, N, P, protein, lipid, carbohydrate) composition of the jellyfish Pelagia noctiluca (collected from the Gulf of Trieste in 1985 to 1986) and its presumed diet-net zooplankton. The mean δ 13C (-18.8‰) and δ D (-58.4‰) ratios of P. noctiluca showed enrichment in heavy isotopes relative to net zooplankton (∼2‰ for carbon and ∼30‰ for hydrogen). Both the jellyfish and net zooplankton were characterized by a linear correlation between δ 13C and δ D. C. N, P, protein, lipid, and carbohydrate contents of P. noctiluca were low on a dry weight basis as compared to net zooplankton. Significantly lower C:N and C:P ratios were found in jellyfish indicating a greater loss of carbon relative to nitrogen and phosphorus along the passage to a higher trophic level. Isotopic and biochemical evidence indicate that, though collected in nearshore waters, P. noctiluca depended on autochthonous marine organic matter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, H., Blackstock, J. (1973). Estimation of lipids in marine animals and tissues: detailed investigations of the sulpho-vanilin method for total lipids. J. exp. mar. Biol. Ecol., 12: 103–118Google Scholar
  2. Benović, A., Fonda Umani, S., Malej, A., Specchi, M. (1984). Net zooplankton biomass in the Adriatic Sea. Mar. Biol. 79: 209–218Google Scholar
  3. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram proteins using the principle of protein-dye binding. Analyt. Biochem. 72: 254–284Google Scholar
  4. Checkley, D. M., Entzroth, L. C. (1985). Elemental and isotopic fractionations of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle. J. Plankton Res. 7: 553–568Google Scholar
  5. Clarke, A., Holmes, L. J., Gore, D. J. (1992). Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. J. exp. mar. Biol. Ecol. 155: 55–68Google Scholar
  6. Degens, E. T. (1969). Biogeochemistry of stable carbon isotopes. In: Eglinton, E., Murphy, M. T. J. (eds.) Organic geochemistry. Springer-Verlag, New York, p. 304–329Google Scholar
  7. DeNiro, M., Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochim. cosmochim. Acta 42: 495–506Google Scholar
  8. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28: 350–356Google Scholar
  9. Faganeli, J., Malej, A., Pezdič, J. (1990). Sources and flow suspended organic matter in the Gulf of Trieste (Northern Adriatic). MAP Tech. Rep. Ser. 45: 183–205Google Scholar
  10. Faganeli, J., Malej, A., Pezdič, J., Malačič, V. (1988). C:N:P: ratios and stable C isotopic ratios as indicators of sources of organic matter in the Gulf of Trieste (Northern Adriatic). Oceanol. Acta 11: 377–382Google Scholar
  11. Fry, B. (1988). Food web structure on Georges Bank from ftable C, N, and S isotopic composition. Limnol. Oceanogr. 33: 1182–1190Google Scholar
  12. Fry, B., Arnold, C. (1982). Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus. Oecologia 54: 200–204Google Scholar
  13. Fry B., Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. mar. Sci. 27: 13–47Google Scholar
  14. Gearing, J. N., Gearing, P. J., Rudnick, D. T., Requejo, A. G., Hutchins, M. J. (1984). Isotopic variability of organic carbon in a phytoplanktonbased, temperate estuary. Geochim. cosmochim. Acta 48: 1035–1041Google Scholar
  15. Goering, J., Alexander, V., Haubenstock, N. (1990). Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a north Pacific bay. Estuar. Cstl Shelf Sci. 30: 239–260Google Scholar
  16. Gorsky, G., Dallot, S., Sardou, J., Fenaux, R., Carre, C., Palazzoli, I. (1988). C and N composition of some northwestern Mediterranean zooplankton and micronekton species. J. exp. mar. Biol. Ecol. 124: 133–144Google Scholar
  17. Grasshoff, K. (1976). Methods of sea water analyses. Verlag Chemie, Weinheim, p. 317Google Scholar
  18. Kremer, P., Reeve, M. R. (1989). Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. II. Carbon budgets and growth model. J. Plankton Res. 11: 553–574Google Scholar
  19. Larson, R. J. (1986a). Water content, organic content, and carbon and nitrogen composition of medusae from the nrotheast Pacific. J. exp. mar. Biol. Ecol. 99: 107–120Google Scholar
  20. Larson, R. J. (1986b). Water content, organic content, and carbon and nitrogen composition of medusae from the northeast Pacific. J. exp. mar. Biol. Ecol. 99: 107–120Google Scholar
  21. Madin, L. P., Cetta, C. M., McAlister, V. L. (1981). Elemental and biochemical composition of salps (Tunicata: Thaliacea). Mar. Biol. 63: 217–226Google Scholar
  22. Malej, A. (1982). Unusual occurrence of Pelagia noctiluca in the Adriatic Sea. I. Some notes on its biology. Acta adriat. 23: 97–102 (in Slovenian)Google Scholar
  23. Malej, A. (1989a). Behaviour and trophic ecology of the jellyfish Pelagia noctiluca (Forsskal 1775). J. exp. mar. Biol. Ecol. 126: 259–270Google Scholar
  24. Malej, A. (1989b). Respiration and excretion rates of Pelagia noctiluca (Semaeostomae, Scyphozoa). Proc. 21st Eur. mar. Biol. Symp. 107-113 (1989) Klekowski, R. Z. et al. (eds.) Institute of Oceanology, Polish Academy of Sciences, GdanskGoogle Scholar
  25. Malej, A., Malej, M. (1992). Population dynamics of the jellyfish Pelagia noctiluca (Forsskal 1775). In: Colombo G., Ferrari, I., Ceccherelli, V. U., Rossi, R. (eds.) Marine eutrophication and population dynamics. Olsen & Olsen, ISS, Fredensborg, p. 215–219Google Scholar
  26. Murphy, J., Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chim. Acta 27: 31–36Google Scholar
  27. Rau, G. H., McHugh, C. M., Harrold, C., Baxter, C., Hecker, B., Embley, R. W. (1990). δ 13C, δ 15N, δ 18O of Calyptogena phaseoliformis (bivalve mollusc) from the Ascension Fan-Valley near Monterey, California. Deep-Sea Res. 37: 1669–1676Google Scholar
  28. Raymont, J. E. G. (1983). Plankton and productivity. Zooplankton. Pergamon Press, Oxford, p. 284Google Scholar
  29. Russell, F. S. (1970). The medusae of the British Isles. II. Pelagic Scyphozoa. University Press, Cambridge, p. 284Google Scholar
  30. Simenstad, C. A., Wissmar, R. C. (1985). δ 13C evidence of the origins and fates of organic carbon in estuarine and near-shore food webs. Mar. Ecol. Prog. Ser. 22: 141–152Google Scholar
  31. Stoecker, D. K., Michaels, A. E., Davis, L. H. (1987). Grazing by the jellyfish, Aurelia aurita, on micorzooplankton. J. Plankton Res. 9: 901–915Google Scholar
  32. Tan, F. C., Strain, P. M. (1988). Stable isotope studies in the Gulf of St. Lawrence. Can. Bull. Fish. aquat. Sciences 220: 59–77Google Scholar
  33. van der Veer, H. W., Oorthuysen, W. (1985). Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the western Wadden Sea. Neth. J. Sea Res. 19: 38–44Google Scholar
  34. Zavodnik, D. (1987). On the food and feeding of Pelagia noctiluca in the North Adriatic. 2nd Workshop Jellyfish Blooms Mediterr. UNEP, Trieste, 2–5 Sept. 1987Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Malej
    • 1
  • J. Faganeli
    • 1
  • J. Pezdič
    • 2
  1. 1.Marine Biological Station Piran, Institute of BiologyUniversity of LjubljanaPiranSlovenia
  2. 2.J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations