Marine Biology

, Volume 116, Issue 4, pp 527–532 | Cite as

Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan

  • I. Imai
  • Y. Ishida
  • Y. Hata
Article

Abstract

A marine gliding bacterium Cytophaga sp. (strain J18/M01) was isolated from Harima-Nada, eastern Seto Inland Sea, Japan in 1990. This bacterium preys upon various species of marine phytoplankton. All of the five raphidophycean flagellates, all of the four diatoms, and one of the two dinoflagellates examined were killed within a few days when cultured with the bacterium. The bacterium presumably achieves this by direct attack, because the culture filtrate in which host organisms were totally destroyed had no significant effects on the growth of the same host organism (Chattonella antiqua). If one or a few bacterial cells were inoculated into C. antiqua culture, all of the host organisms were killed. The bacterium proliferated in filter-sterilized seawater, suggesting its ubiquitous existence in the coastal sea. The killing of phytoplankton by bacteria such as Cytophaga sp. J18/M01 may be a significant factor influencing the population dynamics of phytoplankton in nature and may contribute to the sudden disappearance of red tides in the coastal sea. Bacterial destruction of phytoplankton may also be a factor that regulates primary productivity in marine ecosystems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alexander, M. (1981). Why microbial predators and parasites do not eliminate their prey and hosts. A. Rev. Microbiol 35:113–133Google Scholar
  2. Ashton, P. J., Robarts, R. D. (1987). Apparent predation of Microcystis aeruginosa Kurz. Emend Elenkin by a Saprospira-like bacterium in a hypertrophic lake (Hartbeespoort dam, South Africa). J. Limnol. Soc. S. Afr. 13:44–47Google Scholar
  3. Baker, K. H., Herson, D. S. (1978). Interactions between the diatom Thalassiosira pseudonana and an associated Pseudomonad in a mariculture system. Appl. envirl Microbiol. 35:791–796Google Scholar
  4. Brand, L. E., Guillard, R. R. L. (1981). A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Planktor. Res. 3: 193–201Google Scholar
  5. Brayton, P. R., Tamplin, M. L., Huq, A., Colwell, R. R. (1987). Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. envirl Microbiol. 53: 2862–2865Google Scholar
  6. Buck, J. D., Cleverdon, R. C. (1960). The spread plate as a method for the enumeration of marine bacteria. Limnol. Oceanogr. 5: 78–80Google Scholar
  7. Barnham, J. C., Collan, S. A., Daft, M. J. (1984). Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Archs. Microbiol. 137: 220–225Google Scholar
  8. Chen, L. C. M., Edelstain, T., McLachlan, J. (1969). Bonnemaisonia hamifera Hariot inmature and in culture. J. Phycol. 5: 211–220Google Scholar
  9. Cole, J. J. (1982). Interactions between bacteria and algae in aquatic ecosystems. A. Rev. Ecol. Syst. 13: 291–314Google Scholar
  10. Daft, M. J., McCord, S. B., Stewart, W. D. P. (1975). Ecological studies on algal-lysing bacteria in fresh waters. Freshwat. Biol. 5: 577–596Google Scholar
  11. Dahle, A. B., Laake, M. (1982). Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl. envirl Microbiol. 43: 169–176Google Scholar
  12. Fraleigh, P. C., Bunham, J. C. (1988). Myxococcal predation on cyanobacterial populations: nutrient effects. Limnol. Oceanogr. 33: 476–483Google Scholar
  13. Fukami, K., Nishijima, T., Murata, H., Doi, S., Hata, Y. (1991). Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Nippon Suisan Gakk 57: 2321–2326Google Scholar
  14. Fukami, K., Yuzawa, A., Nishijima, T., Hata, Y. (1992). Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakk. 58: 1073–1077Google Scholar
  15. Furuki, M., Kobayashi, M. (1991). Interaction between Chattonella and bacteria and prevention of this red tide. Mar. Pollut. Bull. 23: 189–193Google Scholar
  16. Furuki, M., Moriguchi, Y., Kitamura, H. (1985). Effects of bacteria on formation of Chattonella sp. bloom in the Sea of Harima. Hakkokogaku 63: 61–69 (in Japanese with English abstract)Google Scholar
  17. Imai, I. (1984). Size distribution and biomass of bacteria in Suo-Nada, western Seto Inland Sea. Bull. Nansei reg. Fish. Res. Lab. 17: 183–196 (in Japanese with English abstract)Google Scholar
  18. Imai, I. (1987). Size distribution, number and biomass of bacteria in intertidal sediments and seawater of Ohmi Bay, Japan. Bull. Jap. Soc. microb. Ecol. 2: 1–11Google Scholar
  19. Imai, I. (1989). Microbial ecology in coastal systems. Bull. cstl Oceanogr. 28: 85–101 (in Japanese with English abstract)Google Scholar
  20. Imai, I., Ishida, Y., Sawayama, S., Hata, Y. (1991). Isolation of a marine gliding bacterium that kills Chattonella antiqua (Raphidophyceae). Nippon Suisan Gakk. 57: 1409Google Scholar
  21. Imai, I., Itoh, K. (1987). Annual life cycle of Chattonella spp., causative flagellates of noxious red tides in the Inland Sea of Japan. Mar. Biol. 94: 287–292Google Scholar
  22. Ishida, Y., Shibahara, K., Uchida, H., Kadota, H. (1980). Distribution of obligately oligotrophic bacteria in Lake Biwa. Bull. Jap. Soc. Scient. Fish. 46: 1151–1158Google Scholar
  23. Ishio, S., Mangindaan, R. E., Kuwahara, M., Nakagawa, H. (1989). A bacterium hostile to flagellates: identification of species and characters. In: Okaichi, T., Anderson, D. M., Nemoto, T. (eds.) Red tides: biology, environmental science, and toxicology. Elsevier, New York, p. 205–208Google Scholar
  24. Itoh, K., Imai, I. (1987). Rafido so (Raphidophyceae). In: Japan Fisheries Resource Conservation Association (ed.) A guide for studies of red tide organisms. Shuwa, Tokyo, p. 122–130 (in Japanese)Google Scholar
  25. Kimura, B. (1989). Studies on chemical and biological factors influencing the growth of Uroglena americana, a red tide Chrysophyceae in Lake Biwa. J. Shimonoseki Univ. Fish. 38: 23–70Google Scholar
  26. Knauer, G. A., Hebel, D., Cipriano, F. (1982). Marine snow: major site of primary production in coastal waters. Nature, Lond. 300: 630–631Google Scholar
  27. Mitsutani, A., Uchida, A., Ishida, Y. (1987). Occurrence of bluegreen algae and algal lytic bacteria in Lake Biwa. Bull. Jap. Soc. microb. Ecol. 2: 21–28Google Scholar
  28. Porter, K. G., Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948Google Scholar
  29. Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M., Sanders, R. W. (1985). Protozoa in planktonic food webs. J. Protozool 32: 409–415Google Scholar
  30. Reichenbach, H. (1981). Taxonomy of the gliding bacteria. A. Rev. Microbiol. 35: 339–364Google Scholar
  31. Reim, R. L., Shane, M. S., Cannon, R. E. (1974). The characterization of a Bacillus capable of blue-green bactericidal activity. Can. J. Microbiol. 20: 981–986Google Scholar
  32. Revelante, N., Gilmartin, M. (1991). The phytoplankton composition and population enrichment in gelatinous “macroaggregates” in the northern Adriatic during the summer of 1989. J. exp. mar. Biol. Ecol. 146: 217–233Google Scholar
  33. Riquelme, C. E., Ishida, Y. (1989). Interaction between microalgae and bacteria in coastal seawater. Mem. Coll. Agr. Kyoto Univ. 134: 1–60Google Scholar
  34. Safferman, R. S., Morris, M. E. (1963). Algal virus: isolation. Science, N.Y. 140: 679–680Google Scholar
  35. Sakata, T. (1990). Occurrence of marine Saprospira sp. possessing algicidal activity for diatoms. Nippon Suisan Gakk. 56: 1165Google Scholar
  36. Sakata, T., Fujita, Y., Yasumoto, H. (1991). Plaque formation by algicidal Saprospira sp. on a lawn of Chaetoceros ceratosporum. Nippon Suisan Gakk. 57: 1147–1152Google Scholar
  37. Sherr, E. B., Sherr, B. F., Paffenhöfer, G.-A. (1986). Phagotrophic protozoa as food for metazoans: a “missing” trophic link in marine pelagic food webs? Mar. microb. Fd Webs 1: 61–80Google Scholar
  38. Shilo, M. (1970). Lysis of blue-green algae by Myxobacter. J. Bact. 104: 453–461Google Scholar
  39. Stewart, J. R., Brown, R. M. (1969). Cytophaga that kills or lyses algae. Science, N.Y. 164: 1523–1524Google Scholar
  40. Stewart, W. D. P., Daft, M. J. (1977). Microbial pathogens of cyanophycean blooms. In: Droop, M. R., Jannasch, H. W. (eds.) Advances in aquatic microbiology, Vol. 1. Academic Press, London, p. 177–218Google Scholar
  41. Throndsen, J. (1978). The dilution-culture method. In: Sournia, A. (ed.) Phytoplankton manual. Unesco, Paris, p. 218–224Google Scholar
  42. Ukeles, R., Bishop, J. (1975). Enhancement of phytoplankton growth by marine bacteria. J. Phycol. 11: 142–149Google Scholar
  43. Yamaguchi, M., Imai, I., Honjo, T. (1991). Effects of temperature, salinity and irradiance on the growth rates of the noxious red tide flagellates Chattonella antiqua und C. marina (Raphidophyceae). Nippon Suisan Gakk. 57: 1277–1284 (in Japanese with English abstract)Google Scholar
  44. Yamamoto, Y. (1978). Detection of algal lysing biological agents in lakes by the soft-agar overlayer technique. Jap. J. limnol. 39: 9–14 (in Japanese with English abstract)Google Scholar
  45. Yamamoto, Y. (1988). Cyanobacteria-lysing agents and their distribution patterns of lakes and river in Japan. Bull. Jap. Soc. microb. Ecol. 2: 77–88 (in Japanese with English abstract)Google Scholar
  46. Yoshida, Y., Kawaguchi, K. (1983). Buoyancy and phototaxis of Chattonella antiqua (Hada) Ono. Bull. Plankton Soc., Japan 30: 11–19 (in Japanese with English abstract)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • I. Imai
    • 1
  • Y. Ishida
    • 2
  • Y. Hata
    • 3
  1. 1.Nansei National Fisheries Research InstituteHiroshima-kenJapan
  2. 2.Department of FisheriesKyoto UniversityKyotoJapan
  3. 3.Department of Marine BioscienceFukui Prefectural UniversityObama FukuiJapan

Personalised recommendations