Current Genetics

, Volume 11, Issue 4, pp 275–286 | Cite as

Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements

  • Jeffrey D. Palmer
  • Bernardita Osorio
  • Jane Aldrich
  • William F. Thompson


We have compared the sequence organization of four previously uncharacterized legume chloroplast DNAs - from alfalfa, lupine, wisteria and subclover — to that of legume chloroplast DNAs that either retain a large, ribosomal RNA-encoding inverted repeat (mung bean) or have deleted one half of this repeat (broad bean). The circular, 126 kilobase pair (kb) alfalfa chloroplast genome, like those of broad bean and pea, lacks any detectable repeated sequences and contains only a single set of ribosomal RNA genes. However, in contrast to broad bean and pea, alfalfa chloroplast DNA is unrearranged (except for the deletion of one segment of the inverted repeat) relative to chloroplast DNA from mung bean. Together with other findings reported here, these results allow us to determine which of the four possible inverted repeat configurations was deleted in the alfalfa-pea-broad bean lineage, and to show how the present-day broad bean genome may have been derived from an alfalfa-like ancestral genome by two major sequence inversions. The 147 kb lupine chloroplast genome contains a 22 kb inverted repeat and has essentially complete colinearity with the mung bean genome. In contrast, the 130 kb wisteria genome has deleted one half of the inverted repeat and appears colinear with the alfalfa genome. The 140 kb subclover genome has been extensively rearranged and contains a family of at least five dispersed repetitive sequence elements, each several hundred by in size; this is the first report of dispersed repeats of this size in a land plant chloroplast genome. We conclude that the inverted repeat has been lost only once among legumes and that this loss occurred prior to all the other rearrangements observed in subclover, broad bean and pea. Of those lineages that lack the inverted repeat, some are stable and unrearranged, other have undergone a moderate amount of rearrangement, while still others have sustained a complex series of rearrangement either with or without major sequence duplications and transpositions.

Key words

Chloroplast genome evolution Inverted repeat Inversion Repeated sequence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich J, Cherny B, Merlin E, Williams C, Mets L (1985) Curr Genet 9:233–238Google Scholar
  2. Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523Google Scholar
  3. Bohnert HJ, Loffelhardt W (1982) FEBS Lett 150:403–406Google Scholar
  4. Brears T, Schardl CL, Lonsdale DM (1986) Plant Mol Biol 6:171–177Google Scholar
  5. Calos MP, Miller JH (1980) Cell 20:579–595Google Scholar
  6. Chu NM, Tewari KK (1982) Mol Gen Genet 186:23–32Google Scholar
  7. Coates D, Cullis CA (1982) Plant Mol Biol 1:183–189Google Scholar
  8. Dagert M, Ehrlich SD (1979) Gene 6:23–38Google Scholar
  9. Dang LH, Pring DR (1986) Plant Mol Biol 6:119–123Google Scholar
  10. Day A, Ellis THN (1984) Cell 39:359–368Google Scholar
  11. de Heij HT, Lustig H, Moeskops DIM, Bovenberg WA, Bisanz C, Groot GSP (1983) Curr Genet 7:1–6Google Scholar
  12. Fluhr R, Edelman M (1981) Nucleic Acids Res 9:6841–6853Google Scholar
  13. Fluhr R, Fromm H, Edelman M (1983) Gene 25:271–280Google Scholar
  14. Gelvin SB, Howell SH (1979) Mol Gen Genet 173:315–322Google Scholar
  15. Gillham NW, Boynton JE, Harris EH (1985) In: Cavalier-Smith T (ed) DNA evolution: natural selection and genome size. Wiley, New York, pp 299–351Google Scholar
  16. Hirai A, Ishibashi T, Morikami A, Iwatsuki N, Shinozaki K, Sugiura M (1985) Theor Appl Genet 70:117–122Google Scholar
  17. Howe CJ (1985) Curr Genet 10:139–145Google Scholar
  18. Ko K, Strauss NA, Williams JP (1983) Curr Genet 7:255–263Google Scholar
  19. Ko K, Strauss NA, Williams JP (1984) Curr Genet 8:359–367Google Scholar
  20. Koller B, Delius H (1980) Mol Gen Genet 178:261–269Google Scholar
  21. Kolodner R, Tewari KK (1975) Biochim Biophys Acta 402:372–390Google Scholar
  22. Maizels N (1976) Cell 9:431–438Google Scholar
  23. McIntosh L, Poulsen C, Bogorad L (1980) Nature (London) 288:556–560Google Scholar
  24. Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH (1983) Gene 21:257–266Google Scholar
  25. Mubumbila M, Crouse EJ, Weil JH (1984) Curr Genet 8:379–385Google Scholar
  26. Ohyama K, Yamano Y, Fukuzawa H, Komano T, Yamagishi H, Fujimoto S, Sugiura M (1983) Mol Gen Genet 189:1–9Google Scholar
  27. Palmer JD (1982) Nucleic Acids Res 10:1593–1605Google Scholar
  28. Palmer JD (1983) Nature (London) 301:92–93Google Scholar
  29. Palmer JD (1985a) Annu Rev Genet 19:325–354Google Scholar
  30. Palmer JD (1985b) In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 131–240Google Scholar
  31. Palmer JD (1986) Methods Enzymol 118:167–186Google Scholar
  32. Palmer JD, Stein DB (1982) Curr Genet 5:165–170Google Scholar
  33. Palmer JD, Stein DB (1986) Curr Genet 10:823–833Google Scholar
  34. Palmer JD, Thompson WF (1981a) Proc Natl Acad Sci USA 78:5533–5537Google Scholar
  35. Palmer JD, Thompson WF (1981b) Gene 15:21–26Google Scholar
  36. Palmer JD, Thompson WF (1982) Cell 29:537–550Google Scholar
  37. Palmer JD, Edwards H, Jorgensen RA, Thompson WF (1982) Nucleic Acids Res 10:6819–6832Google Scholar
  38. Palmer JD, Singh GP, Pillay DTN (1983a) Mol Gen Genet 190:13–19Google Scholar
  39. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983b) Theor Appl Genet 65:181–189Google Scholar
  40. Palmer JD, Osorio B, Watson JC, Edwards H, Dodd J, Thompson WF (1984) In: Thornber JP, Staehelin LA, Hallick RB (eds) Biosynthesis of the photosynthetic apparatus: molecular biology, development and regulation. Liss, New York, pp 273–283 (UCLA Symposia on Molecular and Cellular Biology, new series, vol 14)Google Scholar
  41. Palmer JD, Jorgensen RA, Thompson WF (1985a) Genetics 109:195–213Google Scholar
  42. Palmer JD, Boynton JE, Gillham NW, Harris EH (1985b) In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 269–278Google Scholar
  43. Polhill RM, Raven PH (1981) Advances in legume systematics, part 1. Royal Botanic Gardens, KewGoogle Scholar
  44. Quigley F, Weil JH (1981) Curr Genet 9:495–503Google Scholar
  45. Rochaix JD (1978) J Mol Biol 126:597–617Google Scholar
  46. Rochaix JD, Malnoe P (1978) Cell 15:661–670Google Scholar
  47. Shinozaki K, Sun CR, Sugiura M (1984) Mol Gen Genet 197:363–367Google Scholar
  48. Spielmann A, Ortiz W, Stutz E (1983) Mol Gen Genet 190:5–12Google Scholar
  49. Stein DB, Palmer JD, Thompson WF (1986) Curr Genet 10:835–841Google Scholar
  50. Takaiwa F, Sugiura M (1982) Eur J Biochem 124:13–19Google Scholar
  51. Thomas KM, Wood BJ, Bassett CL, Rawson JRY (1984) Curr Genet 8:291–297Google Scholar
  52. Tohdoh N, Sugiura M (1982) Gene 17:213–218Google Scholar
  53. Vieira J, Messing J (1982) Gene 19:259–268Google Scholar
  54. Westhoff P, Nelson N, Bunemann H, Herrmann RG (1981) Curr Genet 4:109–120Google Scholar
  55. Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34:279–310Google Scholar
  56. Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) Nucleic Acids Res 9:7699–3270Google Scholar
  57. Zurawski G, Bohnert HI, Whitfeld PR, Bottomley W (1982a) Proc Natl Acad Sci USA 79:7699–7703Google Scholar
  58. Zurawski G, Bottomley W, Whitfeld PR (1982b) Proc Natl Acad Sci USA 79:6260–6264Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Jeffrey D. Palmer
    • 1
  • Bernardita Osorio
    • 2
  • Jane Aldrich
    • 3
  • William F. Thompson
    • 2
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Plant BiologyCarnegie Institution of WashingtonStanfordUSA
  3. 3.The Standard Oil CompanyClevelandUSA

Personalised recommendations