Marine Biology

, Volume 8, Issue 3, pp 190–201 | Cite as

Saturated and unsaturated hydrocarbons in marine benthic algae

  • W. W. Youngblood
  • M. Blumer
  • R. L. Guillard
  • F. Fiore


Saturated and olefinic hydrocarbons were determined in 24 species of green, brown and red benthic marine algae from the Cape Cod area (Massachusetts, USA). Among the saturated hydrocarbons, n-pentadecane predominates in the brown and n-heptadecane in the red algae. A C17 alkyleyclopropane has been identified tentatively in Ulvalactuca and Enteromorpha compressa, two species of green algae. Mono-and diolefinic C15 and C17 hydrocarbons are common. The structures of several new C17, C19 and C21 mono-to hexaolefins have been elucidated by gas chromatography, mass spectrometry and ozonolysis. In fruiting Ascophyllum nodosum, the polyunsaturated hydrocarbons carbons occur exclusively in the reproductive structures. The rest of the plant contains n-alkanes from C15 to C21. A link between the reproductive chemistry of benthic and planktonic algae and their olefin content is suggested. An intriguing speculation is based on Paffenhöfer's (1970) observation that the sex ratio of laboratory reared Calanus helgolandicus depends upon the species of algae fed to the nauplii. The percentage of males produced correlates with our analyses of heneicosahexaene in the algal food. Our analyses of the hydrocarbons in benthic marine algae from coastal environments should aid studies of the coastal food web and should enable us to distinguish between hydrocarbon pollutants and the natural hydrocarbon background in inshore waters.


Hydrocarbon Ozonolysis Ascophyllum Nodosum Hydrocarbon Pollutant Natural Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackman, R. G., C. S. Tocher and J. McLachlan: Marine phytoplankter fatty acids. J. Fish Res. Bd Can. 25, 1603–1620 (1968).Google Scholar
  2. Blumer, M.: Hydrocarbons in the digestive tract and the liver of a basking shark. Science, N.Y. 156, 390–391 (1967).Google Scholar
  3. —An integrated gas chromatograph-mass spectrometer system with carrier gas separator. Analyt. Chem. 40, 1590–1592 (1968).Google Scholar
  4. Blumer, M. The persistence of an olefinic hydrocarbon in the marine food web. In: Summary of investigation, p. 40. Unpubl. M.s. Woods Hole Oceanographic Institution 1969.Google Scholar
  5. —The organic chemistry of sea water In: Symposium on organic matter in natural waters. Ed. by D. W. Hood. Alaska: University Press 1970. (In press).Google Scholar
  6. R. R. L. Guillard and T. Chase: Hydrocarbons of marine phytoplankton. Mar. Biol. 8, 183–189 (1971).Google Scholar
  7. M. M. Mullin and R. R. L. Guillard: A polyunsaturated hydrocarbon (3,6,9,12,15,18-heneicosahexaene) in the marine food web. Mar. Biol. 6, 226–236 (1970a).Google Scholar
  8. ——D. W. Thomas: Pristane in the marine environment. Helgoländer wiss. Meeresunters. 10, 187–201 (1964).Google Scholar
  9. J. C. Robertson, J. E. Gordon and J. Sass: Phytolderived C19 di-and triolefinic hydrocarbons in marine zooplankton and fishes. Biochemistry, N.Y. 8, 4067–4074 (1969).Google Scholar
  10. M. M. Mullin G. Souza and J. Sass: Hydrocarbon pollution of edible shellfish by an oil spill. Ref. No. 70-1, pp 1–13. Unpubl. M.s. Woods Hole Oceanographic Institution, 1970b.Google Scholar
  11. Blumer, M., M. M. Mullin H. L. Sanders, J. F. Grassle and G. R. Hampson: The West Falmouth oil spill. Ref. 70-44, pp 1–32. Unpubl. M.s. Woods Hole Oceanographic Institution. 1970c.Google Scholar
  12. ——J. Sass: Hydrocarbon pollution of edible shellfish by an oil spill. Mar. Biol. 5, 195–202 (1970b).Google Scholar
  13. Budzikiewicz, H., C. Djerassi and D. H. William: Mass spectra of organic compounds, 690 pp. San Fracisco: Holden Day 1967.Google Scholar
  14. Burg, S. P. and E. A. Burg: Ethylene action and the ripening of fruits. Science, N.Y. 148, 1190–1196 (1965).Google Scholar
  15. Clark, R. C., Jr. and M. Blumer: Distribution of n-paraffins in marine organisms and sediments. Limnol. Oceanogr. 12, 79–87 (1967).Google Scholar
  16. Collins, C. J.: Protonated cyclpropanes. Chem. Rev. 69, 543–550 (1969).Google Scholar
  17. Gelpi, E., J. Oro, H. J. Schneider and E. O. Bennet: Olefins of high molecular weight in two microscopic algae. Science, N.Y. 161, 700–702 (1968).Google Scholar
  18. H. Schneider, J. Mann and J. Oro: Hydrocarbons of geochemical significance in microscopic algae. Phytochem. 9, 603–612 (1970).Google Scholar
  19. Khimii, U.: Structure and reactivity of cyclopropane and its derivatives. Russian Chem. Rev. 31, 419–439 (1962).Google Scholar
  20. Kovats, E.: Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv. chim. Acta 41, 1915–1932 (1958).Google Scholar
  21. Lawrence, C. D. and F. H. Tipper: Some reactions of cyclopropane and a comparison with the lower olefins. Part I. Introduction and reaction with strong acids. J. chem. Soc. 1, 713–716 (1955).Google Scholar
  22. Lee, R. F., J. C. Nevenzel, G. A. Paffenhöfer, A. A. Benson, S. Patton and T. E. Kavanagh: A unique hexaene hydrocarbon from a diatom (Skeletonema costatum). Biochem. biophys. Acta 202, 386–388 (1970).Google Scholar
  23. Moore, R. E., J. A. Pettus, Jr. and M. S. Doty: Dictoptyerene A, an odoriferous constituent from algae of the genus Dictyopteris. Tetrahedron Lett. 46, 4787–4790 (1968).Google Scholar
  24. Paffenhöfer, G. A.: Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wiss. Meeresunters. 20, 346–359 (1970).Google Scholar
  25. Pettus, J. A. and R. E. Moore: Isolation and structure determination of an undeca-1,3,4,8-tetraene and dictyopterene B from algae of the genus Dictyopteris. Chem. Comm. 17, 1093–1094 (1970).Google Scholar
  26. Stránský, K. and M. Streibl: On natural waxes. XII. Composition of hydrocarbons in morphologically different plant parts. Colln Czech. chem. Commun. Engl. Edn 34, 103–107 (1969).Google Scholar
  27. Taylor, W. R.: Marine algae of the Eastern tropical and subtropical coasts of the Americas, 870 pp. Ann Arbor, Michigan: University of Michigan Press 1960.Google Scholar
  28. —Marine algae of the northeastern coast of North America. Second revised edition, second printing with corrections and addenda, 509 pp. Ann Arbor, Michigan: University of Michigan Press 1962.Google Scholar
  29. Wall, D., R. R. L. Guillard, B. Dale, E. Swift and N. Watabe: Calcitic resting cysts in Peridinium trochoideum (Stein) Lemmermann, an autotrophic marine dinoflagellate. Phycologia 9 (2), 151–156 (1970).Google Scholar
  30. Wehrli, A. and E. Kovats: Gaschromatographische Charakterisierung organischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alioyclischer und aromatischer Verbindungen. Helv. chim. Acta 42, 2709–2736 (1959).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • W. W. Youngblood
    • 1
  • M. Blumer
    • 2
  • R. L. Guillard
    • 2
  • F. Fiore
    • 3
  1. 1.Chemistry DepartmentFlorida Technological UniversityOrlandoUSA
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Systematics-Ecology ProgramMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations