Advertisement

Reading and Writing

, Volume 3, Issue 3–4, pp 331–343 | Cite as

Planum temporale asymmetry: In-vivo morphometry affords a new perspective for neuro-behavioral research

  • Helmuth Steinmetz
  • Albert M. Galaburda
Part Two: Neurology/Neuropsychology

Abstract

High-resolution magnetic resonance (MR) imaging today allows the in vivo quantification of the surface area of the cortex covering the planum temporale and permits assessment of the direction and degree of individual left-right asymmetry of this structure. This methodologic advance is promoting new studies on the biological mechanisms of anatomic and functional lateralization and on the structural accompaniments of disorders such as developmental dyslexia. It is important to stress that studies must agree on the definition and measurement of planum asymmetry, and we review our definition and its justification in the present article.

Data obtained from normal subjects supported the assumption that planum (a)symmetry underlies functional lateralization. Thus, familial sinistrality predicted for symmetry of the planum in all eight left-handers studied. The pattern of planum symmetry in the normals was similar to that found in the post mortem studies of dyslexic individuals. Insofar as hand preference and developmental dyslexia are in part genetically transmitted, we suggest that planum symmetry may represent an inherited condition as well. Further-more, even though planum symmetry is part of the anatomic substrate of developmental dyslexia, it is unlikely that it represents a form of developmental anatomic pathology.

Keywords

Dyslexia Reading Handedness Laterality Temporal lobe Planum temporale Magnetic resonance imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bever T. G., Carrithers C., Cowart W. and Townsend D. J. (1989). Language processing and familial handedness. In A. M. Galaburda (ed.), From Reading to Neurons. Cambridge: Bradford Books/MIT Press, 331–360.Google Scholar
  2. Collins R. L. (1981). A demonstration of an inheritance of the direction of asymmetry that is consistent with the notion that genetic alleles are left-right indifferent. Behavioral Genetics, 11, 596–600.Google Scholar
  3. von Economo C. and Horn L. (1930). Über Windungsrelief, Masse und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift für Neurologie und Psychiatrie, 130, 678–757.Google Scholar
  4. Eidelberg D. and Galaburda A. M. (1984). Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. Archives of Neurology, 41, 843–852.Google Scholar
  5. Filipek P. A., Kennedy D. N., Caviness V. S., Rossnick S. L., Spraggins T. A. and Starewicz P. M. (1989). Magnetic resonance imaging-based brain morphometry: development and application to normal subjects. Annals of Neurology, 25, 61–67.Google Scholar
  6. Galaburda A. M., LeMay M., Kemper T. and Geschwind N (1978a). Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance. Science, 199, 852–856.Google Scholar
  7. Galaburda A. M., Sanides F. and Geschwind N. (1978b). Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Archives of Neurology, 35, 812–817.Google Scholar
  8. Galaburda A. M. and Kemper T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Annals of Neurology, 6, 94–100.Google Scholar
  9. Galaburda A. M. and Sanides F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190, 597–610.Google Scholar
  10. Galaburda A. M. (1984). Anatomical asymmetries. In N. Geschwind and A. M. Galaburda (eds.), Cerebral dominance. The Biological Foundations. Cambridge: Harvard University Press, 11–25.Google Scholar
  11. Galaburda A. M., Sherman G. F., Rosen G. D., Aboitiz F. and Geschwind N. (1985). Developmental dyslexia: four consecutive patients with cortical anomalies. Annals of Neurology, 18, 222–233.Google Scholar
  12. Galaburda A. M., Aboitiz F., Rosen G. D. and Sherman G. F. (1986). Historical asymmetry in the primary visual cortex of the rat: implications for mechanisms of cerebral asymmetry. Cortex, 22, 151–160.Google Scholar
  13. Galaburda A. M., Corsiglia J., Rosen G. D. and Sherman G. F. (1987). Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia, 25, 853–868.Google Scholar
  14. Geschwind N. and Levitsky W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161, 186–187.Google Scholar
  15. Geschwind N. (1970). The organization of language and the brain. Science, 170, 940–944.Google Scholar
  16. Geschwind N. and Galaburda A. M. (1987). Cerebral Lateralization. Biological Mechanisms, Associations, and Pathology. Cambridge: MIT Press.Google Scholar
  17. Goldman-Rakic P. S. and Rakic P. (1984). Experimental modification of gyral patterns. In N. Geschwind and A. M. Galaburda (eds.), Cerebral Dominance. The Biological Foundations, Cambridge: Harvard University Press, 179–192.Google Scholar
  18. Haslam R. H. A., Dalby J. T., Johns R. D. and Rademaker A. W. (1981). Cerebral asymmetry in developmental dyslexia. Archives of Neurology, 38, 679–682.Google Scholar
  19. Hécaen H., De Agostini M. and Monzon-Montes A. (1981). Cerebral organization in left-handers. Brain and Language, 12, 261–284.Google Scholar
  20. Henderson V. W., Naeser M. A., Weiner J. M., Pieniadz J. M. and Chui H. C. (1984). CT criteria of hemisphere asymmetry fail to predict language laterality. Neurology, 34, 1086–1089.Google Scholar
  21. Hier D. B., LeMay M., Rosenberger P. B. and Perlo V. P. (1978). Developmental dyslexia. Evidence for a subgroup with reversal of asymmetry. Archives of Neurology, 35, 90–92.Google Scholar
  22. Humphreys P., Kaufmann W. E., Galaburda A. M. (1990). Developmental dyslexia in women: Neuropathological findings in three cases. Annals of Neurology, 28, 727–738.Google Scholar
  23. Humphreys P., Rosen G. D., Press D. M., Sherman G. F. and Galaburda A. M. (1991). Freezing lesions of the developing rat brain. I. A model for cerebrocortical microgyria. Journal of Neuropathology and Experimental Neurology, 50, 145–160.Google Scholar
  24. Hynd G. W., Semrud-Clikeman M., Lorys A. R., Novey E. S. and Eliopulos D. (1990). Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Archives of Neurology, 47, 919–926.Google Scholar
  25. Innocenti, G. M. and Berbel, P. (In press a). Analysis of an experimental cortical network: i) Architectonics of visual areas 17 and 18 after neonatal injections of ibotenic acid; similarities with human microgyria. Journal of Neural Transplantation.Google Scholar
  26. Innocenti, G. M. and Berbel, P. (In press b). Analysis of an experimental cortical network: ii) Connections of areas 17 and 18 after neonatal injections of ibotenic acid. Journal of Neural Transplantation.Google Scholar
  27. Kaufmann W. E. and Galaburda A. M. (1989). Cerebrocortical microdysgenesis in neurologically normal subjects: a histopathologic study. Neurology, 39, 238–244.Google Scholar
  28. Mazziotta J. C., Phelps M. E., Carson R. E. and Kuhl D. E. (1982). Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology, 32, 921–937.Google Scholar
  29. Mesulam M-M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11, 592–598.Google Scholar
  30. Petersen S. E., Fox P. T., Posner M. I., Mintun M. and Raichle M. E. (1988), Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585–589.Google Scholar
  31. Pfeifer R. A. (1936). Pathologie der Hörstrahlung und der corticalen Hörsphäre. In O. Bumke and O. Förster O. (eds.), Handbuch der Neurologie, vol. 6 Berlin: Springer, 533–626.Google Scholar
  32. Rosen G. D., Sherman G. F. and Galaburda A. M. (1989). Interhemispheric connections differ between symmetrical and asymmetrical brain regions. Neuroscience, 33, 525–533.Google Scholar
  33. Rubens A. B., Mahowald M. W. and Hutton J. T. (1976). Asymmetry of lateral (Sylvian) fissures in man. Neurology, 26, 620–624.Google Scholar
  34. Rumsey J. M., Dorwart R., Vermess M., Denckla M. B., Kruesi M. J. P. and Rapoport J. L. (1986). Magnetic resonance imaging of brain anatomy in severe developmental dyslexia. Archives of Neurology, 43, 1045–1046.Google Scholar
  35. Sherman G. F., Galaburda A. M. and Geschwind N. (1985). Cortical anomalies in brains of New Zealand mice: a neuropathologic model of dyslexia? Proceedings of the National Academy of Sciences (USA), 82, 8072–8074.Google Scholar
  36. Sherman G. F., Morrison L., Rosen G. D., Behan P. O. and Galaburda A. M. (1990a). Brain abnormalities in immune defective mice. Brain Research, 532, 25–33.Google Scholar
  37. Sherman G. F., Stone J. S., Press D. M., Rosen G. D. and Galaburda A. M. (1990b). Abnormal architecture and connections disclosed by neurofilament staining in the cerebral cortex of autoimmune mice. Brain Research, 529, 202–207.Google Scholar
  38. Sherman G. F., Stone J. S., Rosen G. D. and Galaburda A. M. (1990c). Neocortical VIP neurons are increased in the hemisphere containing focal cerebrocortical microdysgenesis in New Zealand Black Mice. Brain Research, 532, 232–236.Google Scholar
  39. Steingrüber H. J. (1971). Zur Messung der Händigkeit. Zeitschrift für Experimentelle und Angewandte Psychologie (Göttingen), 18, 337–357.Google Scholar
  40. Steinmetz H., Fürst G. and Freund H.-J. (1989a). Cerebral cortical localization: application and validation of the proportional grid system in MR imaging. Journal of Computer Assisted Tomography, 13, 10–19.Google Scholar
  41. Steinmetz H., Fürst G. and Freund H.-J. (1990a). Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. American Journal of Neuroradiology, 11, 1123–1130.Google Scholar
  42. Steinmetz H., Rademacher J., Huang H., Hefter H., Zilles K., Thron A. and Freund H.-J. (1989b). Cerebral asymmetry: MR planimetry of the human planum temporale. Journal of Computer Assisted Tomography, 13, 996–1005.Google Scholar
  43. Steinmetz H., Rademacher J., Jäncke L., Huang Y., Thron A. and Zilles K. (1990b). Total surface of temporoparietal intrasylvian cortex: diverging left-right asymmetries. Brain and Language, 39, 357–372.Google Scholar
  44. Steinmetz H., Volkmann J., Jäncke L. and Freund H.-J. (1991). Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Annals of Neurology, 29, 315–319.Google Scholar
  45. Yeni-Komshian G. H. and Benson D. A. (1976). Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys. Science, 192, 387–389.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Helmuth Steinmetz
    • 1
  • Albert M. Galaburda
    • 2
    • 3
    • 4
  1. 1.Department of NeurologyHeinrich-Heine-UniversityDüsseldorf 1Germany
  2. 2.Department of NeurologyHarvard Medical SchoolBostonUSA
  3. 3.Neurological UnitBeth Israel HospitalBostonUSA
  4. 4.Charles A. Dana Research InstituteBeth Israel HospitalBostonUSA

Personalised recommendations