Advertisement

Mammalian Genome

, Volume 5, Issue 9, pp 531–537 | Cite as

Phosphoglycerate kinase pseudogenes in the tammar wallaby and other macropodid marsupials

  • D. W. Cooper
  • E. A. Holland
  • K. Rudman
  • J. A. Donald
  • R. Zehavi-Feferman
  • L. M. McKenzie
  • A. H. Sinclair
  • J. A. Spencer
  • J. A. M. Graves
  • W. E. Poole
Original Contributions

Abstract

Phosphoglycerate kinase (EC 2.7.2.3; PGK) exists in two forms in marsupials. PGK1 is an X-linked house-keeping enzyme, and PGK2 is a mainly testis-specific enzyme under autosomal control. We have used PGK1 probes derived from two closely related species of macropodid marsupials (kangaroos and wallabies) to demonstrate the existence of a large family of pseudogenes in the tammar wallaby (Macropus eugenii). Over 30 fragments are detectable after Taq digestion. We estimate that there are 25–30 copies per genome. Most are autosomally inherited and are apparently not closely linked. Only two restriction fragments that appeared to be sex linked could be detected. Varying degrees of hybridization of fragments to the probes suggest different levels of homology, and hence different ages of origin. The existence of two PGK1 homologous restriction fragments from the X and a large number from the autosomes was also demonstrated by somatic cell hybridization for two other macropodid species, the wallaroo (M. robustus) and the red kangaroo (M. rufus). These results are compared with those from human and mouse, and it is suggested that the propensity of PGK1 to form pseudogenes is an ancient (∼130 MYR BP) characteristic of mammals. The high level of polymorphism detected in the tammar makes these PGK1 probes potentially useful for measuring genetic variability in this species and other macropodids.

Keywords

Somatic Cell Related Species Genetic Variability Restriction Fragment Large Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adra, C.N., Ellis, N.A., McBurney, M.W. (1988) The family of mouse phosphoglycerate kinase genes and pseudogenes. Somat. Cell Mol. Genet. 14, 69–81.Google Scholar
  2. Benham, F.J., Povey, S. (1989). Members of the human glyceraldehyde-3-phosphate dehydrogenase-related gene family map to dispersed chromosomal locations. Genomics 5, 209–214.Google Scholar
  3. Bennett, K.L., Hill, R.E., Pietras, D.F., Woodwoth-Gutai, M., Kane-Haas, C., Houston, J.M., Heath, J.K., Hastie, N.D. (1984) Most highly repeated dispersed DNA families in the mouse genome. Mol. Cell. Biol. 4, 1561–1571.Google Scholar
  4. Biamonti, G., Buvoli, M., Bassi, M.T., Morandi, C., Cobianchi, F., Riva, S. (1989) Isolation of an active gene encoding human hnRNP protein A1. Evidence for alternative splicing. J. Mol. Biol. 207, 491–503.Google Scholar
  5. Chen, S.-H., Malcolm, L.A., Yoshida, A., Giblett, E.R. (1971) PGK: an X-linked polymorphism in man. Am. J. Hum. Genet. 23, 87–91.Google Scholar
  6. Cooper, D.W., VandeBerg, J.L., Sharman, G.B., Poole, W.E. (1971). PGK polymorphism in kangaroos provides further evidence for paternal X-inactivation. Nature New Biol. 230, 155–157.Google Scholar
  7. Danielson, P.E., Forss-Petter, S., Brow, M.A., Calavetta, L., Douglass, J., Milner, R.J., Sutcliffe, J.G. (1988). p1815: a cDNA clone of the rat mRNA encoding cyclophilin. DNA 7, 261–267.Google Scholar
  8. Dawson, G.W., Graves, J.A.M. (1986). Gene mapping in marsupials and monotremes III. Assignment of four genes to the X chromosome of the wallaroo and euro (Macropus robustus). Cytogenet. Cell Genet. 42, 80–84.Google Scholar
  9. Dobrovic, A., Graves, J.A.M. (1986). Gene mapping in marsupials and monotremes II. Assignments to the X chromosome of dasyurid species. Cytogenet. Cell Genet. 4, 9–13.Google Scholar
  10. Donald, J.A., Hope, R.M. (1981). Mapping a marsupial X chromosome using kangaroo-mouse somatic cell hybrids. Cytogenet. Cell Genet. 29, 127–137.Google Scholar
  11. Eicher, E.M., Cherry, M., Flaherty, L. (1978). Autosomal phosphoglycerate kinase linked to mouse major histocompatibility complex. Mol. Gen. Genet. 158, 225–228.Google Scholar
  12. Ewens, W.J., Griffiths, R.C., Ethier, S.N., Wilcox, S.A., Graves, J.A.M. (1992). Statistical analysis of in situ hybridization data—derivation and use of a simple Zmax test. Genomics 12, 675–682.Google Scholar
  13. Graves, J.A.M., Watson, J.M. (1991). Mammalian sex chromosomes. Evolution of organisation and function. Chromosoma 101, 63–68.Google Scholar
  14. Heinzmann, C., Clarke, C.F., Klisak, I., Mohandas, T., Sparkes, R.S., Edwards, P.A., Lusis, A.J. (1989). Dispersed family of human genes with sequence similarity to farnesyl pyrophosphate synthetase. Genomics 5, 493–500.Google Scholar
  15. Hinds, L.A., Poole, W.E., Tyndale-Biscoe, C.H., van Oorschot, R.A.H., Cooper, D.W. (1990). Reproductive biology and the potential for genetic studies in the tammar wallaby, Macropus eugenii. Aust. J. Zool. 37, 223–234.Google Scholar
  16. Hope, R.M., Cooper, S., Wainwright, B. (1990). Globin macromolecular sequences in marsupials and monotremes. In: Mammals from Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes, J.A.M. Graves, R.M. Hope, D.W. Cooper, eds. (Melbourne: CSIRO), pp. 147–171.Google Scholar
  17. Johnson, K.R., Lehn, D.A., Reeves, R. (1989) Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol. Cell. Biol. 9, 2114–2123.Google Scholar
  18. Johnson, K.R., Cook, S.A., Bustin, M., Davisson, M.T. (1992). Genetic mapping of the murine gene and 14 related sequences encoding chromosomal protein HMG-14. Mamm. Genome 3, 625–632.Google Scholar
  19. Johnson, K.R., Cook, S.A., Ward-Bailey, P., Bustin, M., Davisson, M.T. (1993). Identification and genetic mapping of the murine gene and 20 related sequences encoding chromosomal protein HMG-17. Mamm. Genome 4, 83–89.Google Scholar
  20. Kozak, L.A., McLean, G.K., Eicher, E.M. (1973). X-linkage of phosphoglycerate kinase in the mouse. Biochem. Genet. 11, 41–47.Google Scholar
  21. Kramer, J.M., Erickson, R.P. (1981). Developmental program of PGK-1 and PGK-2 isozymes in spermatogenic cells of the mouse: specific activities and rates of synthesis. Dev. Biol. 87, 37–45.Google Scholar
  22. Kunkel, L.M., Smith, K.D., Boyer, S.H., Borgaonkar, D.S., Wachtel, S.S., Miller, O.J., Breg, W.R., Jones, H.W., Rary, J.M. (1977). Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc. Natl. Acad. Sci. USA 74, 1245–1249.Google Scholar
  23. Kuzumaki, T., Tanaka, T., Ishikawa, K., Ogata, K. (1987). Rat ribosomal protein L35a multigene family: molecular structure and characterization of three L35a-related pseudogenes. Biochim. Biophys. Acta 909, 99–106.Google Scholar
  24. Madsen, H.O., Poulsen, K., Dahl, O., Clark, B.F., Hiorth, J.P. (1990). Retropseudogenes constitute the major part of the human elongation factor 1 alpha gene family. Nucleic Acids Res. 18, 1513–1516.Google Scholar
  25. McCarrey, J.R. (1990). Molecular evolution of the human Pgk-2 retroposon. Nucleic Acids Res. 18, 949–955.Google Scholar
  26. McKenzie, L.M., Cooper D.W. (1994). Conservation genetics of the parma wallaby (Macropus parma): a case study for Australian marsupials. Submitted.Google Scholar
  27. McKenzie, L.M., Cooper, D.W., Collet, C. (1993). Use of a sub-species cross for efficient development of a linkage map for a marsupial mammal, the tammar wallaby (Macropus eugenii). Cytogenet. Cell Genet. 64, 264–267.Google Scholar
  28. Michelson, A.M., Bruns, G.A.P., Morton, C.C., Orkin, S.H. (1985). The human phosphoglycerate kinase multigene family: HLA-associated sequences and an X-linked locus containing a processed pseudogene and its functional counterpart. J. Biol. Chem. 260, 6982–6992.Google Scholar
  29. Ott, J. (1976). A computer program for linkage analysis of general human pedigrees. Am. J. Hum. Genet. 28, 528–529.Google Scholar
  30. Reed, K.G., Mann, D.A. (1985). Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13, 7207–7221.Google Scholar
  31. Richards-Smith, B.A., Elliott, R.W. (1992). Mapping of the mouse ornithine decarboxylase-related sequence family. Mamm. Genome 2, 215–232.Google Scholar
  32. Sinclair, A.H., Wrigley, J.M., Graves, J.A.M. (1987). Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genet. Res. 50, 131–136.Google Scholar
  33. Temin, H.M. (1985). Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Mol. Biol. Evol. 2, 455–468.Google Scholar
  34. Van Daal, A., Cooper, D.W., Molloy, P.L. (1989). A marsupial phosphoglycerate kinase (PGK) processed pseudogene. Genomics 5: 264–269.Google Scholar
  35. VandeBerg, J.L. (1985). Isozymes. Curr. Top. Biol. Med. Res. 12, 133–187.Google Scholar
  36. VandeBerg, J.L., Cooper, D.W., Close, R.L. (1973). Mammalian testis phosphoglycerate kinase. Nature New Biol. 243, 48–50.Google Scholar
  37. VandeBerg J.L., Cooper, D.W., Close, R.L. (1976). Testis specific phosphoglycerate kinase B in mouse. J. Exp. Zool. 198, 231–240.Google Scholar
  38. VandeBerg, J.L., Cooper, D.W., Sharman, G.B., Poole, W.E. (1980). Somatic expression and autosomal inheritance of phosphoglycerate kinase B in kangaroos. Genetics 95, 413–424.Google Scholar
  39. Virbasius, J.V., Scarpulla, R.C. (1988). Structure and expression of rodent genes encoding the testis-specific cytochrome c. Differences in gene structure and evolution between somatic and testicular variants. J. Biol. Chem. 263, 6791–6796.Google Scholar
  40. Zehavi-Feferman, R., Cooper, D.W. (1992). PCR derived cDNA clones for X-linked phosphoglycerate kinase-1 in a marsupial, the tammar wallaby (Macropus eugenii). Biochem. Biophys. Res. Commun. 187, 26–31.Google Scholar
  41. Zehavi-Feferman, R., Cooper, D.W. (1994). Estimation of the age of a phosphoglycerate kinase pseudogene in a marsupial. In preparation.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • D. W. Cooper
    • 1
  • E. A. Holland
    • 1
  • K. Rudman
    • 1
  • J. A. Donald
    • 1
  • R. Zehavi-Feferman
    • 1
  • L. M. McKenzie
    • 1
  • A. H. Sinclair
    • 2
  • J. A. Spencer
    • 2
  • J. A. M. Graves
    • 2
  • W. E. Poole
    • 3
  1. 1.School of Biological SciencesMacquarie UniversityAustralia
  2. 2.School of Biological SciencesLa Trobe UniversityBundooraAustralia
  3. 3.CSIRO Division of Wildlife and EcologyLynehamAustralia

Personalised recommendations