Advertisement

Marine Biology

, Volume 7, Issue 2, pp 153–160 | Cite as

Studies of primary productivity in coastal waters of southern Long Island, New York

  • E. F. Mandelli
  • P. R. Burkholder
  • T. E. Doheny
  • R. Brody
Article

Abstract

Phytoplankton productivity of the tidal estuaries and coastal waters of southern Nassau Country, Long Island, New York, USA was determined monthly at 28 stations during 1966. Diatoms alternated with dinoflagellates in dominating the standing crop in the coastal area. The estuaries were characterized by sustained blooms of green flagellates and dinoflagellates during the spring/summer period, 1966. Chlorophyll a ranged from 1.0 to 27.6 mg/m3 in the estuarine area, and 1.45 to 10.15 mg/m3 in adjacent coastal waters. Rate of phytosynthesis per unit weight chlorophyll a for surface samples in the region under study a veraged from 3.1 to 3.5 mgC/mg chlorophyll a/h. At light saturation, however, the ratio varied according to water temperature and species' composition. Primary productivity decreased seawards, with mean values for 1966 of 0.35, 0.22, and 0.16 gC/m3/d for the estuarine, nearshore and offshore areas, respectively.

Keywords

Chlorophyll Phytoplankton Water Temperature Coastal Area Surface Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alpine Geophysical Associates: Report by Manganaro, Martin and Lincoln to Nassau County Disposal District No. 3. (Appendix A) Oceanogr. Stud. 1, 1–73 (1966)Google Scholar
  2. Anderson, G. C.: The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts. Limnol. Oceanogr. 9, 284–302 (1964).Google Scholar
  3. Barlow, J. P., C. J. Lorenzen and R. T. Myren: Eutrophication of a tidal estuary. Limnol. Oceanogr. 8, 251–262 (1963).Google Scholar
  4. Burkholder, P. R. and E. F. Mandelli: Carbon assimilation of marine phytoplankton in Antarctica. Proc. natn. Acad. Sci. U.S.A. 54, 437–444 (1965).Google Scholar
  5. Conover, R. J.: Oceanography of Long Island Sound, 1952–1954. VI. The biology of Acartia clausi and A. tonsa. Bull. Bingham oceanogr. Coll. 15, 156–223 (1956).Google Scholar
  6. Curl, H. Jr. and G. C. McLfod: The physiological ecology of a marine diatom, Skeletonema costatum (Grev.) Cleve. J. mar. Res. 19, 70–88 (1961).Google Scholar
  7. — and L. F. Small: Variations in photosynthetic assimilation ratios in natural marine phytoplankton communities. Limnol. Oceanogr. 10 (Suppl.), 67–73 (1965).Google Scholar
  8. Eppley, R. W.. J. N. Rogers and J. J. McCarthy: Half saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14, 912–920 (1969).Google Scholar
  9. Holmes, R. W.: Surface chlorophyll a, surface primary production and zooplankton volumes in the eastern Pacific Ocean. Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 144, 109–116 (1958).Google Scholar
  10. Ichimura, S. E.: Photosynthesis pattern of natural phytoplankton relating to light intensity. Botan. Mag., Tokyo 73, 458–467 (1960).Google Scholar
  11. Ketchum, B. H., A. C. Redfield and J. C. Ayers: The oceanography of the New York Bight. Pap. Phys. Oceanogr. Met. 12, 1–46 (1951).Google Scholar
  12. R. F. Vaccaro and N. Corwin: The annual cycle of phosphorus and nitrogen in New England Coastal waters. J. mar. Res. 17, 282–301 (1958).Google Scholar
  13. Lackey, J. B.: The microbiology of a Long Island bay in the summer of 1961. Int. Revue ges. Hydrobiol. 48, 577–601 (1963).Google Scholar
  14. Mac Isaac, J. J. and R. C. Dugdale: The kinetics of nitrate and ammonia uptake by natural populations of marine phytoplankton. Deep Sea Res. 16, 45–57 (1960).Google Scholar
  15. Mandelli, E. F. and P. R. Burkholder: Primary productivity in the Gerlache and Bransfield Straits of Antarctica. J. mar. Res. 24, 15–27 (1966).Google Scholar
  16. Martin, J. H.: Phytoplankton-zooplankton relationships in Marragansett Bay. Limnol. Oceanogr. 10, 185–191 (1965).Google Scholar
  17. Patten, B. C.: Plankton energetics of Raritan Bay. Limnol. Oceanogr. 6, 369–387 (1961).Google Scholar
  18. R. A. Mulford and J. E. Wabinner: An annual phytoplankton cycle in the lower Chesapeake Bay. Chesapeake Sci. 4, 1–20 (1963).Google Scholar
  19. Pratt, D. M.: The winter-spring diatom flowering in Narragansett Bay. Limnol. Oceanogr. 10, 173–184 (1965).Google Scholar
  20. Richards, F. A.: Dissolved silicate and related properties of some western North Atlantic and Caribbean waters. J. mar. Res. 17, 449–465 (1958).Google Scholar
  21. — with T. G. Thompson: The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. J. mar. Res. 11, 156–172 (1952).Google Scholar
  22. Riley, G. A.: Plankton studies. III. Long Island Sound. Bull. Bingham oceanogr. Coll. 7, 1–93 (1941).Google Scholar
  23. Ryther, J. H.: The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, N. Y. Biol. Bull. mar. biol. Lab., Woods Hole 106, 198–209 (1954).Google Scholar
  24. E. M. Hulburt and R. F. Vaccaro: The dynamics of a diatom bloom. Biol. Bull. mar. biol. Lab., Woods Hole 115, 257–268 (1958).Google Scholar
  25. — and C. S. Yentsch: The estimation of phytoplankton production in the ocean from chlorophyll and light data. Limnol Oceanogr. 2, 281–286 (1957).Google Scholar
  26. Saijo, Y. and S. Ichimura: Some considerations on phytosynthesis of phytoplankton from the point of view of productivity measurements. J. oceanogr. Soc. Japan (20th Anniversary Volume) 689–693 (1962).Google Scholar
  27. Sournia, O.: Variations saisonnières et nycthémérales du phytoplankton marin et de la production primaire dans une baie tropicale, á Nosy-Bé (Madagascar). Int. Revue ges. Hydrobiol. 53, 1–76 (1968).Google Scholar
  28. Steemann Nielsen, E.: The use of radio-active carbon (C14) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18, 117–140 (1952).Google Scholar
  29. — and V. K. Hansen: Light adaptation in marine phytoplankton populations and its interrelationship with temperature. Physiologia Pl. 12, 353–370 (1959).Google Scholar
  30. — and E. K. Jorgensen: The adaptation of plankton algae I. General part. Physiologia Pl. 21, 401–413 (1968).Google Scholar
  31. Strickland, J. H. D.: Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd Can. 122, 1–172 (1960).Google Scholar
  32. — and T. R. Parsons: Discussion of spectrophotometric determination of marine plant pigment, with revised equations for ascertaining chlorophylls and carotenoids. J. mar. Res. 21, 155–163 (1963).Google Scholar
  33. — A manual for seawater analysis. Bull. Fish. Res. Bd. Can. 125, 1–203 (1965).Google Scholar
  34. Williams, R. B. and M. B. Murdoch: Phytoplankton production and chlorophyll concentration in the Beaufort Channel, North Carolina. Limnol. Oceanogr. 11, 73–82 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • E. F. Mandelli
    • 1
  • P. R. Burkholder
    • 2
  • T. E. Doheny
    • 3
  • R. Brody
    • 4
  1. 1.Texas DivisionThe Dow Chemical CompanyFreeportUSA
  2. 2.Department of Marine SciencesUniversity of Puerto RicoMayaguez
  3. 3.Department of Conservation and Waterways of the Town of HempsteadLong IslandUSA
  4. 4.College of the Virgin IslandsSt. ThomasUSA

Personalised recommendations