Journal of Materials Science

, Volume 31, Issue 12, pp 3213–3221 | Cite as

A comparative study of microstructure, mechanical and fracture properties of Ni3Al-based intermetallics produced by powder metallurgy and standard melting and casting processes

  • D. Božić
  • N. Ilić
  • M. Mitkov
  • M. T. Jovanović
  • M. Zdujić


A comparative study of the microstructure, mechanical properties and fractography of Ni3Al macro- and microalloyed intermetallics produced by powder metallurgy (PM) and standard vacuum melting and casting processes has been carried out. Non-porous PM compacts were obtained by vacuum hot pressing of powders produced either by gas atomization or by a rotating electrode process. All materials showed a positive temperature dependence of the compression yield strength. The maximum strength was attained between 600 and 700 °C, then the decrease occurs. With increase in temperature the ductility of all materials slightly decreased to a minimum and then abruptly increased. Values of mechanical properties of PM compacts were higher than those of as-cast material. There is a correlation between the fracture morphology and the ductility of Ni3Al, i.e. the higher ductility corresponds to transgranular fracture, while the minimum ductility is a consequence of intergranular fracture.


Ductility Yield Strength Fracture Property Powder Metallurgy Ni3Al 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. S.Stoloff, Int. Met. Rev. 29 (1984) 123.Google Scholar
  2. 2.
    C. T.Liu, in Proceedings of the Conference, “High Temperature Ordered Intermetallic Alloys IV”, edited by L. A.Johnson, D. P.Pope and J. D.Stiegler (Materials Research Society Proceedings, Materials Research Society, Pittsburgh, PA, 1991) Vol. 213, p. 168.Google Scholar
  3. 3.
    F. H.Thornton, R. C.Davies and T. L.Johnston, Metall. Trans., 1 (1970) 207.Google Scholar
  4. 4.
    N. S.Stoloff and R. C.Davies, Prog. Mater. Sci. 13 (1968) 3.Google Scholar
  5. 5.
    C. T.Liu, in Proceedings of the Conference, “High Temperature Ordered Intermetallic Alloys II”, edited by N. S.Stoloff, C. C.Koch, C. T.Liu and O.Izumi (Materials Research Society Proceedings, Materials Research Society, Pittsburgh, PA, 1987) Vol. 81.Google Scholar
  6. 6.
    K.Aoki and O.Izumi, Nippon Kinzako Gakkaishi 43 (1979) 1190.Google Scholar
  7. 7.
    A. I.Taub, S. C.Huang and M. K.Chang, Metall. Trans. 15A (1984) 399.Google Scholar
  8. 8.
    C. T.Liu and V. K.Sikka, J. Metals 36 (1986) 19.Google Scholar
  9. 9.
    C. T.Liu, C. L.White and J. A.Horton, Acta Metall. 33 (1985) 213.Google Scholar
  10. 10.
    A. Bose, B. Moore, R. M. German and N. S. Stoloff, J. Metals September (1988) 14.Google Scholar
  11. 11.
    A.Bose, B. H.Rabin and R. M.German, Powder Metall. Int. 20 (3) (1988) 25.Google Scholar
  12. 12.
    C.Nishimura and C. T.Liu, Scripta Metall. 26 (1992) 381.Google Scholar
  13. 13.
    M.Jovanović, D.Božić, N.Ilić, Đ. Drobnjak and M.Mitkov, Mat. Charact. 32 (1994) 89.Google Scholar
  14. 14.
    D.Božić, M.Mitkov, N.Ilić, M. T.Jovanović and M.Zdujić, Mater. Lett. 21 (1994) 161.Google Scholar
  15. 15.
    R. N.Wright and J. E.Flinn, in Proceedings of the Conference, “Hot Isostatic Pressing”, edited by T.Garvare (Centek Publishing, Lulea, Sweden 1988) p. 225.Google Scholar
  16. 16.
    D.Božić, M.Mitkov, N.Ilić, M. T.Jovanović, Sci. Sint. 24 (1992) 191.Google Scholar
  17. 17.
    M.Zdujić, M.Sokić, V.Petrović and D.Uskoković, Powder. Metall. Int. 18 (1986) 275.Google Scholar
  18. 18.
    G. H.Gessinger, “Powder Metallurgy of Superalloys” (Butterworth, New York, 1981) p. 101.Google Scholar
  19. 19.
    R.Laag, V.Tafner, W. A.Kaysser and G.Petzow, Prakt. Metall. 26 (1989) 404.Google Scholar
  20. 20.
    R. M.German, in Proceedings of the Conference, “Sintering' 89”, edited by D. P.Uskoković, H.Palmour III and R. M.Spriggs (Plenum, New York, 1987) p. 439.Google Scholar
  21. 21.
    M.Takeyama and C. T.Liu, Acta Metall. 36 (1988) 1241.Google Scholar
  22. 22.
    T. P.Weighs, V.Zinoviev, V. D.Viens and E. M.Schulson, ibid. 35 (1987) 1109.Google Scholar
  23. 23.
    V. K.Sikka and E. A.Loria, in Proceedings of the Conference, “Superalloys 1988”, edited by M.Gell and J.Radavitch (The Metallurgical Society, Seven Springs, 1988) p. 48.Google Scholar
  24. 24.
    P. S.Khadikar, K.Vedula and B. S.Shabel, Metall. Trans. 18A (1987) 425.Google Scholar
  25. 25.
    A. V.Base and V. K.Sikka, in Proceedings of the Conference “Speciality Materials and Composites”, edited by A.Lawley and A.Swanson (American Powder Metallurgy Institute, Princeton, NJ, 1993) p. 15.Google Scholar
  26. 26.
    R. M.Cooper, K.Shaw, K.McCoy, R. M.German and L.Smith, p. 53.Google Scholar
  27. 27.
    H. V.Sizek and G. T.Gray III, Acta Metall. 41 (1993) 1855.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • D. Božić
    • 1
  • N. Ilić
    • 1
  • M. Mitkov
    • 1
  • M. T. Jovanović
    • 1
  • M. Zdujić
    • 2
  1. 1.Materials Science LaboratoryInstitute of Nuclear Science, “Vinča”BelgradeYugoslavia
  2. 2.Institute of Technical Science of the Serbian Academy of Science and ArtsBelgradeYugoslavia

Personalised recommendations