Journal of Materials Science

, Volume 30, Issue 2, pp 538–543 | Cite as

Undercooling and solidification of droplets of Cu-Ag alloy entrained in the primary phase

  • O. P. Pandey
  • S. Lele
  • S. N. Ojha
  • N. S. Mishra


The undercooling behaviour and formation of metastable microstructures have been studied in the melt of Cu-Ag alloy entrained in its primary phase. A maximum undercooling of 180 °C below the liquidus temperature was observed in isolated liquid droplets. The highly undercooled droplets underwent a massive transformation which resulted in the formation of a metastable solid-solution phase containing Ag-28 at% Cu. The metastable phase decomposed on ageing to form the equilibrium phases. The undercooling behaviour and evolution of metastable microstructures in droplets are discussed.


Polymer Microstructure Equilibrium Phase Material Processing Liquidus Temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Perepezko and. I. E. Anderson, in “Synthesis and Properties of Metastable Phases”, edited by E. S. Machlis and J. J. Rowland (AIME Press, New York, 1980) p. 31.Google Scholar
  2. 2.
    P. H. Shingu, A. Shimohigashi and K. N. Ishihara in “Rapidly Quenched Metals”, Vol. 1 edited by S. Steeb and H. Worlimont (Elsevier Science, 1985) p. 35.Google Scholar
  3. 3.
    G. L. F. Powell, Trans. Met. Soc. AIME 245 (1965) 1785.Google Scholar
  4. 4.
    T. Z. Kattamis and M. C. Flemings, Mod. Casting 52 (1967) 67.Google Scholar
  5. 5.
    S. N. Ojha, P. Ramachandrarao and T. R. Anantharaman, Trans. Ind. Inst. Metals 36 (1983) 51.Google Scholar
  6. 6.
    S. N. Ojha, T. R. Anantharaman and P. Ramachandrarao, J. Mater. Sci. 17 (1982) 2644.Google Scholar
  7. 7.
    G. C. Wang and C. S. Smith, Trans. Met Soc. AIME 188 (1950) 136.Google Scholar
  8. 8.
    R. T. Southin and G. A. Chadwick, Acta Metall. 26 (1978) 223.Google Scholar
  9. 9.
    Y. V. S. S. Prasad, K. Chattopadhyay and P. Ramachandrarao, Acta Metall. Mater. 32 (1984) 1825.Google Scholar
  10. 10.
    K. Chattopadhyay, V. T. Swamy and S. L. Agarwala, ibid. 38 (1990) 521.Google Scholar
  11. 11.
    P. Ramachandrarao, K. LaL, A. Singhdeo and K. Chattopadhyay, Mater. Sci. Eng. 41 (1979) 259.Google Scholar
  12. 12.
    S. N. Ojha, K. Chattopadhyay and P. Ramachandrarao, ibid. 73 (1985) 177.Google Scholar
  13. 13.
    M. J. Kaufman and H. L. Fraser, Int. J. Rapid Solid. 1 (1984–85) 27.Google Scholar
  14. 14.
    K. Chattopadhyay, P. R. Swarnaba and J. P. N. Srivastava, Met. Trans. 20 A (1989) 2109.Google Scholar
  15. 15.
    S. N. Ojha, Z. Metallkde 82 (1991) 41.Google Scholar
  16. 16.
    R. Mehrabian, Int. Met. Rev. 27 (1982) 185.Google Scholar
  17. 17.
    K. N. Ishihara and P. H. Shingu, Scripta Metall. 16 (1982) 837.Google Scholar
  18. 18.
    P. Duwez, R. H. Willens and W. Klement Jr, J. Appl. Phys. 31 (1969) 1136.Google Scholar
  19. 19.
    S. Nagakura, S. Toyamo and S. Oketani, Acta Metall. 14 (1966) 73.Google Scholar
  20. 20.
    R. Stoering and H. Conard, ibid. 17 (1969) 733.Google Scholar
  21. 21.
    B. Jonsson and J. Ågren, J. Less-Common Metals 145 (1985) 153.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • O. P. Pandey
    • 1
  • S. Lele
    • 1
  • S. N. Ojha
    • 1
  • N. S. Mishra
    • 2
  1. 1.Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia
  2. 2.R and D CentreSteel Authority of India LtdRanchiIndia

Personalised recommendations