Advertisement

Journal of Materials Science

, Volume 30, Issue 2, pp 308–320 | Cite as

Atomic oxygen resistant coatings for low earth orbit space structures

  • S. Packirisamy
  • D. Schwam
  • M. H. Litt
Review

Abstract

This review presents research in the area of polymeric coatings developed for protecting low earth orbit (LEO) space structures from atomic oxygen. Following a brief description of the LEO environment, ground-based simulation facilities for atomic oxygen and evaluation of protective coatings are discussed. Atomic oxygen resistant coatings based on different polymeric systems such as fluorinated polymers, silicones, poly (carborane-siloxane)s and decarborane-based polymers are presented. Finally, the performances of different coating systems are compared and the scope for further research to improve the performance of some of the coating systems is discussed.

Keywords

Oxygen Polymer Silicone Atomic Oxygen Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Cull, Paper 55, presented at the Rubber Division Meeting, American Chemical Society, Dallas, Texas, April 1988, p. 11.Google Scholar
  2. 2.
    L. Leger, AIAA 21st Aerospace Sciences Meeting, Paper No. 83-0073, January 1983.Google Scholar
  3. 3.
    A. F. Whitaker, ibid., Paper No. 83-2632, October 1983.Google Scholar
  4. 4.
    W. S. Slemp, B. Santos and G. F. Sykes, AIAA Paper No. 85-0421, 1985.Google Scholar
  5. 5.
    D. G. Zimcik, R. C. Tennyson, L. J. Kok and C. R. Maag, in Proceedings of the Third European Symposium on Spacecraft Materials in Space Environment, ESA SP-232, Noordwijk, Netherlands, October 1985.Google Scholar
  6. 6.
    D. McClure, NASA Contractors Report 4158, p. 28 (1988).Google Scholar
  7. 7.
    C. K. Purvis, NASA/SDIO Space Environmental Effects on Materials Workshop, Hampton, VA, USA, June–July 1988. NASA Conference Publication 3035, Part 1, pp. 5–24.Google Scholar
  8. 8.
    D. E. Bowles and D. R. Tenney, SAMPE J. May/June (1987) 49.Google Scholar
  9. 9.
    J. Visentine, NASA/SDIO Space Environmental Effects on Materials Workshop, Hampton, VA, USA, June–July 1988. NASA Conference Publication 3035, Part 1, pp. 179–195.Google Scholar
  10. 10.
    D. Tenny, ibid., p. 29.Google Scholar
  11. 11.
    B. A. Banks, S. K. Rutledge and J. A. Brady, Paper presented at the 15th Space Simulation Conference, Williamsburgh, VA, USA, October–November 1988.Google Scholar
  12. 12.
    B. A. Banks, S. K. Rutledge, J. A. Brady and J. E. Merrow, NASA/SDIO Space Environmental Effects on Materials Workshop, Hampton, VA, June–July 1988. NASA Conference Publication 3035, Part 1, pp. 197–239.Google Scholar
  13. 13.
    B. A. Banks and S. K. Rutledge, Paper presented at the 4th International Conference on Spacecraft Materials in Space Environment, CERT, Toulouse, France, September 6–9 1988.Google Scholar
  14. 14.
    S. L. Koontz, NASA/SDIO Space Environmental Effects on Materials Workshop. NASA Conference Publication 3035, Part 1, pp. 241–253 (1988).Google Scholar
  15. 15.
    B. A. Banks, L. Gebauer and C. M. Hill, Paper presented at the 1st LDEF Post-Retrieval Symposium, Kissimmee, FL, June 2–8 1991.Google Scholar
  16. 16.
    B. A. Banks, S. K. Rutledge, K. K. De Groh, C. Lamoreaux and R. Olle, Paper presented at the Society of Vacuum Coater, 35th Annual Technical Conference, Baltimore, MD, USA, March 1992.Google Scholar
  17. 17.
    L. L. Fewell, J. Appl. Polym. Sci. 41 (1990) 391.Google Scholar
  18. 18.
    B. A. Banks, S. K. Rutledge, P. E. Paulsen and T. J. Stueber, NASA TM 101971 (1989).Google Scholar
  19. 19.
    “CRC Handbook of Chemistry and Physics”, 160th Edn, edited by R. C. Weast (CRC Press Inc., Boca Raton, FL, 1979–1980) p. F-80.Google Scholar
  20. 20.
    J. Kulig, MS thesis, Case Western Reserve University, Cleveland (1991).Google Scholar
  21. 21.
    B. A. Banks, S. K. Rutledge, K. K. De Groh, M. J. Mirtich, L. Gebauer, R. Olle and C. M. Hill, Paper presented at the 5th International Symposium on Materials in Space Environment, Cannes-Mandelieu, France, September 16–20 1991.Google Scholar
  22. 22.
    J. Kulig, D. Schwam and M. H. Litt, in “Inorganic and Metal Containing Polymeric Materials”, edited by J. Sheats (Plenum Press, New York, 1990) pp. 225–232.Google Scholar
  23. 23.
    J. Kulig, G. Jefferis and M. H. Litt, Polym. Prep. 61 (1989) 219.Google Scholar
  24. 24.
    D. Nir, Thin Solid Films 112 (1984) 41.Google Scholar
  25. 25.
    G. Gille and B. Rau, ibid. 120 (1984) 109.Google Scholar
  26. 26.
    N. Matuda, S. Babu and A. Kinbara, ibid. 81 (1981) 301.Google Scholar
  27. 27.
    D. Schwam, J. Kulig and M. H. Litt, Chem. Mater. 3 (1991) 616.Google Scholar
  28. 28.
    J. Kulig, D. Schwam and M. H. Litt, to be published.Google Scholar
  29. 29.
    R. N. Grimes, “Carboranes” (Academic Press, New York, 1970) pp. 54–55.Google Scholar
  30. 30.
    “Gmelin Handbook of Inorganic Chemistry”, 8th Edn, Vol. 54, edited by K. Niedenzu and K.-C. Buschbeck (Springer, Berlin, 1979) pp. 151–165.Google Scholar
  31. 31.
    “Boron Hydride Chemistry”, edited by E. L. Muetterties (Academic Press, New York, 1975) pp. 136–137.Google Scholar
  32. 32.
    H.-J. Schroeder, J. R. Reiner and T. L. Heying, Inorg. Chem. 1 (1962) 618.Google Scholar
  33. 33.
    H.-J. Schroeder, J. R. Reiner, T. A. Knowles, ibid. 2 (1963) 393.Google Scholar
  34. 34.
    J. R. Reiner and H.-J. Schroeder, US Patent 3 141 856 (1964).Google Scholar
  35. 35.
    H.-J. Schroeder, US Patent 3 155 630 (1964).Google Scholar
  36. 36.
    G. W. Parshall, US Patent 3 035 949 (1962)Google Scholar
  37. 37.
    J. Green. M. M. Fein, N. Meyes, G. Donovan, M. Israel and M. S. Cohen, J. Polym. Sci., Polym. Lett. Ed. 2 (1984) 987.Google Scholar
  38. 38.
    D. Seyferth, W. S. Rees Jr., A. Lightfoot, J. S. Haggerty, Chem. Mater. 1 (1989) 54.Google Scholar
  39. 39.
    W. S. Rees, Jr and D. Seyferth, Ceram. Eng. Sci. Proc. 9 (1988) 1009.Google Scholar
  40. 40.
    A. Lightfoot, W. S. Rees, Jr. and J. S. Haggerty, ibid. 9 (1988) 1021.Google Scholar
  41. 41.
    D. Seyferth, and W. S. Rees, Jr., Chem. Mater. 3 (1991) 1106.Google Scholar
  42. 42.
    W. S. Rees and D. Seyferth, Ceram. Eng. Sci. Proc. 10 (1989) 837.Google Scholar
  43. 43.
    R. E. Johnson, US Patent 4 832 895 (1989).Google Scholar
  44. 44.
    R. E. Johnson, US Patent 4 810 436 (1989).Google Scholar
  45. 45.
    R. E. Johnson, US Patent 4 931 100 (1990).Google Scholar
  46. 46.
    D. Seyferth and W. S. Rees, Jr., US Patent 4 871 826 (1989).Google Scholar
  47. 47.
    W. S. Rees, Jr and D. Seyferth, J. Amer. Ceram. Soc. 71 (1988) C194.Google Scholar
  48. 48.
    S. Packirisamy and M. H. Litt, Paper presented at Materials in Space Meeting, Cleveland, May 1992.Google Scholar
  49. 49.
    S. Packirisamy, D. Schwam and M. H. Litt, Polym. Prepn. 34/2 (1993) 197.Google Scholar
  50. 50.
    S. Packirisamy, D. Schwam and M. H. Litt, to be published.Google Scholar
  51. 51.
    S. Packirisamy and M. H. Litt, to be published.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Packirisamy
    • 1
  • D. Schwam
    • 1
  • M. H. Litt
    • 1
  1. 1.Department of Macromolecular ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations