Wood Science and Technology

, Volume 11, Issue 1, pp 3–22 | Cite as

Relationship between fibre morphology and shrinkage of wood

  • J. D. Boyd


This is a study on the shrinkage of wood representing the wide range of morphology variation in leaning trees. It involved 13 trees of Eucalyptus regnans, one of Eucalyptus sieberi and four of Pinus radiata, and specimens taken at close intervals around the circumference of each. Data indicated a systematic modulation, between extremes at upper and lower sides of each stem, in longitudinal growth strains, relative proportions of thin, medium and thick-walled fibres, microfibril angle in the S2 layer of these, and both Klason and acid-soluble lignin content. Analyses indicated that the microfibril angle in S2 was a prime factor in influencing both longitudinal and volumetric shrinkage reactions; proportion of thick-walled fibres in the tissue, thickness of S2 relative to S1, and variations in lignification also were involved. Unusually thick-walled fibres were associated with visco-elastic strain recovery effects, which could form a substantial part of dimensional changes apparently attributable to shrinkage.


Lignin Shrinkage Eucalyptus Systematic Modulation Lignin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, N. F. 1968. A theoretical model of shrinking wood. Holzforschung 22:97–103Google Scholar
  2. Barber, N. F.; Meylan, B. A. 1964. The anisotropic shrinkage of wood. Holzforschung 18: 146–156Google Scholar
  3. Bland, D. E.; Skicko, J.; Menshun, M. 1975. The relationship of acid insoluble lignin and acid soluble lignin to the lignins of the middle lamella and cell wall in E. regnans. Holzforschung 29:144–147Google Scholar
  4. Bosshard, H. H. 1956. Über die Anisotropie der Holzschwindung. Holz Roh- Werkstoff. 14: 285–295Google Scholar
  5. Boyd, J. D. 1950. Tree growth stresses. III. The origin of growth stresses. Aust. J. Sci. Res. B3: 294–309Google Scholar
  6. Boyd, J. D. 1972. Tree growth stresses. V. Evidence of an origin in differentiation and lignification. Wood Sci. Technol. 6:251–262Google Scholar
  7. Boyd, J. D. 1973a. Compression wood force generation and functional mechanics. N. Z. J. For. Sci. 3:240–258Google Scholar
  8. Boyd, J. D. 1973b. Helical fissures in compression wood cells. Causative factors and mechanics of development. Wood Sci. Technol. 7:92–111Google Scholar
  9. Boyd, J. D. 1974. Anisotropic shrinkage of wood; identification of the dominant determinants. J. Japan Wood Res. Soc. 20:473–482Google Scholar
  10. Boyd, J. D.; Foster, R. C. 1974. Tracheid anatomy changes as responses to changing structural requirements of the tree. Wood Sci. Technol. 8:91–105Google Scholar
  11. Boyd, J. D.; Schuster, K. B. 1972. Tree growth stresses. IV. Visco-elastic strain recovery. Wood Sci. Technol. 6:95–120Google Scholar
  12. Cave, I. D. 1972. A theory on the shrinkage of wood. Wood Sci. Technol. 6:284–292Google Scholar
  13. Freudenberg, K. 1964. The formation of the lignin in the tissue and in vitro. In: M. H. Zimmermann (Ed.): The formation of wood in forest trees, Academic Press, N.Y. pp. 203–218Google Scholar
  14. Gaby, L. I. 1971. Longitudinal shrinkage and fibril angle variation in corewood of southern pine. Georgia For. Res. Paper No. 70, Georgia For. Res. Council, Marcon, GeorgiaGoogle Scholar
  15. Isebrands, J. G.; Parham, R. A. 1974. Slip planes and minute compression failures in kraft pulp from Populus tension wood. Int. Ass. Wood Anat. Bull. 1974 (2): 16–23Google Scholar
  16. Manwiller, F. G. 1967. Tension wood anatomy of silver maple. Forest Prod. J. 17 (1): 43–48Google Scholar
  17. Meylan, B. A. 1968. Cause of high longitudinal shrinkage in wood. Forest Prod. J. 18 (4): 75–78Google Scholar
  18. Nicholson, J. E. 1971. A rapid method for estimating longitudinal growth stresses in logs. Wood Sci. Technol. 5: 40–48Google Scholar
  19. Nicholson, J. E.; Barnacle, J. E.; Lesse, P. F. 1973. Evidence of residual stress in small sections of ordinary green Eucalyptus regnans. Wood Sci. Technol. 7: 20–28Google Scholar
  20. Nicholson, J. E.; Ditchburne, N. 1973. Shrinkage prediction based on an analysis of three wood properties. Wood Sci. 6: 188–189Google Scholar
  21. Nicholson, J. E.; Hillis, W. E.; Ditchburne, N. 1975. Some tree growth-wood property relationships of eucalyptus. Canad. J. For. Res. 5: 424–432Google Scholar
  22. Norberg, H.; Meier, H. 1966. Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 20: 174–178Google Scholar
  23. Perkitny, T.; Helińska, L. 1961. Über den Einfluß gleichzeitiger Temperatur- und Feuchtigkeitsänderung auf die Verformungen des Holzes. Holz Roh- Werkstoff. 19: 259–269Google Scholar
  24. Perkitny, T.; Helińska-Raczkowska, L. 1966. Über den Einfluß von Wachstumsspannungen auf die durch Temperatur- und Feuchtigkeitsänderung ausgelösten Verformungen des Holzes. Holz Roh- Werkstoff. 24: 481–486Google Scholar
  25. Sachsse, H. 1965. Untersuchungen über Eigenschaften und Funktionsweise des Zugholzes der Laubbäume. Georg-August-Universität, Göttingen, Forstliche Fakultät. Schriftenreihe No. 35Google Scholar
  26. Shelbourne, C. J. A.; Namkoong, G. 1966. Photogrammetric technique for measuring bole. 8th Southern Conf. on For. Tree Impr. Proc: 131–136Google Scholar
  27. Wardrop, A. B.; Dadswell, H. E. 1955. The nature of reaction wood. IV. Variations in cell wall organization in tension wood. Aust. J. Bot. 3:177–189Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. D. Boyd
    • 1
    • 2
  1. 1.Forest Products LaboratoryCSIROMelbourne
  2. 2.Division of Building ResearchHighettAustralia

Personalised recommendations