Wood Science and Technology

, Volume 18, Issue 4, pp 255–265 | Cite as

Elastic constants for wood by an ultrasonic method

  • V. Bucur
  • R. R. Archer
Article

Summary

Ultrasonic measurements were carried out on cubic specimens of six species (pine, spruce, douglas-fir, oak, beech, tulip-tree). An orthotropic model of wave propagation was used to interpret these measurements and compute estimates of the elastic compliances. In order to calculate the off-diagonal stiffness terms, velocities were computed on samples with faces at an angle to the principal directions. The elastic compliance matrix was calculated by inverting the stiffness matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach, J. D. 1973: Wave propagation in elastic solids. New York: American ElsevierGoogle Scholar
  2. Dieulesaint, E.; Royer, D. 1974: Ondes élastiques dans les solides. Paris: MassonGoogle Scholar
  3. Hearmon, R. F. S. 1948: Elasticity of wood and plywood. London: Her Majesty's stationary office. Report No. 7Google Scholar
  4. Hearmon, R. F. S. 1961: An introduction to applied anisotropic elasticity. Oxford University PressGoogle Scholar
  5. Krautkamer, J.; Krautkamer, H. 1977: Ultrasonic testing of materials. 2 Ed. Berlin, Heidelberg, New York: Springer-VerlagGoogle Scholar
  6. Mason, W. P. 1958: Physical acoustics and the properties of solids. New York: D. Van NostrandGoogle Scholar
  7. Preziosa, C. 1982: Methode de détermination des constantes élastiques du matériaux bois par utilisation des ultrasons. Thesis. University of Orléans, FranceGoogle Scholar
  8. Schreiber, E.; Anderson, O.; Soga, N. 1973: Elastic constants and their measurements. New York: McGraw HillGoogle Scholar
  9. Truell, R.; Elbaum, C.; Chick, B. 1969: Ultrasonic methods in solid state physics. New York, London: Academic PressGoogle Scholar
  10. Vinh, T. 1982: Communication on Euromech 154, congress “Ultrasonic investigation of structures and mechanical properties of solids”. 27–29 April 1982. University of Bordeaux I, France. (In press) Revue d'Acoustique No. 64.Google Scholar
  11. Wasley, R. J. 1973: Stress wave propagation in solids. New York: Marcel DekkerGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • V. Bucur
    • 1
  • R. R. Archer
    • 2
  1. 1.Station de Recherches sur la Qualité des BoisCentre National de Recherches Forestières de NancySeichampsFrance
  2. 2.Department of Civil EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations