Archives of Toxicology

, Volume 33, Issue 2, pp 151–161

Acrylonitrile biotransformation in rats, mice, and chinese hamsters as influenced by the route of administration and by phenobarbital, SKF 525-A, cysteine, dimercaprol, or thiosulfate

  • I. Gut
  • J. Nerudová
  • J. Kopecký
  • V. Holeček
Original Investigations


Female Wistar rats, conventional albino mice, and Chinese hamsters were given a single dose of acrylonitrile, 0.5 or 0.75 mM/kg body weight. The elimination in the urine of thiocyanate, which is the main metabolite of acrylonitrile, indicated a decreasing proportion of biotransformation after oral (over 20 %), intraperitoneal, or subcutaneous (2 to 5 %), and intravenous (1 %) administration in rats. Oral administration of acrylonitrile in hamsters and mice was also followed by higher biotransformation than intraperitoneal administration. Pretreatment of rats with phenobarbital, SKF 525 A, cysteine, or dimercaprol did not significantly influence elimination of thiocyanate in the urine after the administration of acrylonitrile, but simultaneous administration of thiosulfate significantly increased the metabolized portion of acrylonitrile given intraperitoneally in rats (almost twice) and mice (more than three times). Acrylonitrile was found to be strongly bound in blood. The study confirmed the marked effect of distribution (first-pass metabolic phenomenon) on the metabolic fate of foreign compounds. The strong acrylonitrile binding and cyanoethylation are apparently responsible for the unusually high influence of the different routes of administration on the metabolic fate of acrylonitrile. Acrylonitrile was more effectively metabolized to thiocyanate in mice than in rats after oral, intraperitoneal, and intravenous administration. A greater response of acrylonitrile to thiocyanate metabolism and a larger decrease in its acute toxicity after thiosulfate in mice than in rats indicate possible differences in the mechanism of acrylonitrile toxicity in these animals. Cyanide apparently plays a minor role in the acrylonitrile toxicity in rats, but may play quite an important one in mice.

Key words

Acrylonitrile Phenobarbital SKF 525-A Dimercaprol (BAL) Thiosulfate Cyanide-Thiocyanate Route of Administration Drug Biotransformation Rat Mouse Chinese Hamster 


Wistar Ratten, Standard-Albinomäuse und chinesische Hamster (Weibchen) erhielten eine einmalige Dosis von Acrylonitril, 0,5 oder 0,75 mmol/kg Gewicht. Die Ausscheidung des Thiocyanats, Hauptmetaboliten des Acrylonitrils, wies bei Ratten nach einer oralen (20 %), intraperitonealen und subcutanen (2 bis 5%) und intravenösen (1 %) Applikation einen sinkenden Umwandlungsanteil auf. Auch bei Hamstern und Mäusen rief die orale Verabreichung eine höhere Umwandlung hervor als bei der intraperitonealen Zufuhr.

Die Vorbehandlung von Ratten mit Phenobarbital, SKF 525-A, Cystein oder Dimercaptopropanol, hatte keinen signifikanten Einfluß auf die Ausscheidung von Thiocyanat im Harn. Hingegen erhöhte die gleichzeitige Applikation von Thiosulfat bedeutend den Anteil von Thiocyanat, und zwar bei Ratten fast zweifach, bei Mäusen mehr als dreifach. Die Studie bestätigt den ausgeprägten Einfluß der Verteilung (first pass metabolic phenomenon) auf das metabolische Schicksal von Acrylonitril. Anscheinend ist die starke Bindung von Acrylonitril und die Cyanoethylierung für den so markanten Einfluß der Applikationsart verantwortlich. Nach oraler, intraperitonealer und intravenöser Applikation von Acrylonitril wurde dieser bei Mäusen effektiver in Thiocyanat metabolisiert als bei Ratten. Die größere Umwandlung von Acrylonitril in Thiocyanat und die stärkere Senkung seiner akuten Toxicität nach Thiosulfat deuten auf eventuelle Unterschiede im Mechanismus der toxischen Wirkung von Acrylonitril bei Mäusen und Ratten hin. In der Toxicität des Acrylonitrils für Ratten spielt Cyanid anscheinend eine kleine Rolle, wohl aber für Mäuse.


Acrylonitril Phenobarbital SKF 525-A Dimercaprol (BAL) Thiosulfat Cyanid Thiocyanat Applikationsart Biotransformation Ratte Maus Chinesischer Hamster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beneš, V., Černá, V.: Akrylonitril: Acute Toxizität und Wirkungsmechanismus. J. Hyg. Epidem. (Praha) 3, 106–116 (1959)Google Scholar
  2. Bickel, M. H., Weder, H. J.: Demethylation of imipramine in the rat as influenced by SKF 525-A and by different routes of administration. Life Sci. 7, 1223–1230 (1968)Google Scholar
  3. Brieger, H., Rieders, F., Hodes, W. A.: Acrylonitrile: Spectrophotometric determination, acute toxicity, and mechanism of action. Arch. industr. Hyg. 6, 128–140 (1952)Google Scholar
  4. Czajkowska, T.: Acrylonitrile metabolites excretion following a single dose. Med. Pracy 22, 381–385 (1971)Google Scholar
  5. Dollery, C. T., Davies, D. S., Conolly, M. E.: Differences in the metabolism of drugs, depending upon their routes of administration. Ann. N.Y. Acad. Sci. 179, 108–112 (1971)Google Scholar
  6. Dudley, H. C., Neal, P. A.: Toxicology of acrylonitrile: I. A study of acute toxicity. J. industr. Hyg. 24, 27–36 (1942)Google Scholar
  7. Gibaldi, M.: Pharmacokinetic aspects of drug metabolism. Ann. N.Y. Acad. Sci. 179, 19–31 (1971)Google Scholar
  8. Hashimoto, K., Kanai, R.: Studies on the toxicology of acrylonitrile metabolism, mode of action and therapy. Industr. Hlth (Kawasaki) 3, 30–46 (1965)Google Scholar
  9. Lawton, A. H., Sweeney, T. R., Dudley, H. C.: Toxicology of acrylonitrile: III. Determination of thiocyanates in blood and urine. J. industr. Hyg. 25, 13–20 (1943)Google Scholar
  10. Paulet, G., Desnos, J.: L'Acrylonitrile, toxicité-mécanisme-d'actionthérapeutique. Arch. int. Pharmacodyn. 131, 54–83 (1961)Google Scholar
  11. Paulet, G., Desnos, J., Battig, J.: De la toxicité de l'acrylonitrile. Arch. Mal. prof. 27, 849–856 (1966)Google Scholar
  12. Steinetz, B. G., Beach, V. L., Meli, A.: Plasma and urinary metabolites of progesterone-4-14C administered orally or subcutaneously to rabbits. Steroids 6, 627 (1965)Google Scholar
  13. Tarkowski, S.: Studies on acrylonitrile effect on some properties of cytochrome oxidase. Med. Pracy 19, 525–531 (1968)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • I. Gut
    • 1
  • J. Nerudová
    • 1
  • J. Kopecký
    • 1
  • V. Holeček
    • 1
  1. 1.Institute of Hygiene and Epidemiology Center of Industrial Hygiene and Occupational DiseasesPragueCzechoslovakia

Personalised recommendations