Advertisement

Journal of Materials Science

, Volume 30, Issue 8, pp 1931–1938 | Cite as

Preparation and properties evaluation of zirconiabased/Al2O3 composites as electrolytes for solid oxide fuel cell systems

Part I Powder preparation and characterization
  • L. M. Navarro
  • P. Recio
  • P. Durán
Papers

Abstract

The powder morphology and particle size of both mixtures of ultrafine yttria-doped zirconia (3 to 8 mol% Y2O3) and aluminium hydroxide (0 to 20 wt% Al2O3), and zirconia/yttria/alumina coprecipitated powders were studied using measurements of surface area, X-ray diffraction, differential thermal analysis, infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. All the powders were calcined at 800 °C for 10 minutes. Both the growth of zirconia crystallites and its crystallization temperature were strongly influenced by the presence of alumina. The crystallite zirconia growth was inhibited and the zirconia crystallization temperature was increased. This behaviour has been assumed to be due to the formation of a polycondensed chain of the type Zr-O-Al-O-Y-O-Al-O-Zr in which the diffusion distances were considerably augmented.

Keywords

Transmission Electron Microscopy Zirconia Al2O3 Fuel Cell Differential Thermal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. BAUER and H. PREIS, Z. Elektrochem. 43 (1937) 727.Google Scholar
  2. 2.
    L. G. J. DE HAART and K. J. DE VRIES, in “Multichannel solid oxide fuel reactors”, EN3E/0167E CEC Research Project, Final Report (1989) p. 36.Google Scholar
  3. 3.
    B. Q. MINH, J. Am. Ceram. Soc. 76 (1993) 563.Google Scholar
  4. 4.
    M. RUHLE, N. CLAUSSEN and A. H. HEUER, in “Advances in ceramics”, Vol. 12, Science and Technology of Zirconia II, edited by N. CLAUSSEN, M. RUHLE and A. H. HEUER (Amer. Ceram. Soc., Columbus, OH, 1984) pp. 352–70.Google Scholar
  5. 5.
    A. D. KULJARNI, C. D. JOHNSON, and G. W. PERBIX, J. Inst. Metals 99 (1971) 15.Google Scholar
  6. 6.
    T. H. ETSELL and S. N. FLENGAS, Chem Rev. 70 (1970) 339.Google Scholar
  7. 7.
    T. TAKAHASHI and A. KOZAWA, “Applications of solid electrolytes” (JED Press, Tokyo, 1980).Google Scholar
  8. 8.
    F. K. MAGHADAM and D. A. STEVENSON, J. Am. Ceram. Soc. 66 (1982) 213.Google Scholar
  9. 9.
    T. K. GUPTA, J. H. BETCHOLD, R. C. KUZNICKI, L. H. CADOFF and B. R. ROSSING, J. Mater. Sci. 12(1977) 2421.Google Scholar
  10. 10.
    E. P. BUTLER and A. H. HEUER, J. Am. Ceram. Soc. 68 (1985) 197.Google Scholar
  11. 11.
    S. P. S. BADWAL, J. Mater. Sci. 18 (1983) 3230.Google Scholar
  12. 12.
    F. J. ESPER, K. H. FRIESE and H. GEIER, Advances in Ceramics 12 (1982) 528.Google Scholar
  13. 13.
    K. D. KLUG and L. E. ALEXANDER, “X-ray diffraction procedures” (Wiley, New York, 1974) pp. 618–708.Google Scholar
  14. 14.
    L. M. NAVARRO, PhD thesis, Alcalá de Henares University, Madrid (1994).Google Scholar
  15. 15.
    B. FEGLEY Jr., P. WHITE and H. K. BOWEN, J. Am. Ceram. Soc. 68 (1985) C-60.Google Scholar
  16. 16.
    Y. MURASE, E. KATO and K. DAIMON, J. Am. Ceram. Soc. 69 (1986) 83.Google Scholar
  17. 17.
    S. RAJENDRAN, H. J. TOSSELL and J. V. SANDERS, J. Mater. Sci. 24 (1989) 1195.Google Scholar
  18. 18.
    J. BANNISTER, J. Aust. Ceram. Soc. 18 (1982) 6.Google Scholar
  19. 19.
    L. M. NAVARRO, P. RECIO and P. DURAN, J. Mater. Sci. Submitted.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • L. M. Navarro
    • 1
  • P. Recio
    • 1
  • P. Durán
    • 1
  1. 1.Electroceramics DepartmentInstituto de Cerámica y Vidrio (CSIC)Arganda del Rey, MadridSpain

Personalised recommendations