Journal of Materials Science

, Volume 31, Issue 15, pp 4055–4065 | Cite as

Elevated temperature deformation behaviour of multi-phase Ni-20 at % Al-30 at % Fe and its constituent phases

  • S. Guha
  • I. Baker
  • P. R. Munroe
Papers

Abstract

The mechanical behaviour of the multi-phase (β′ + γ/γ′) alloy Ni-20 at % Al-30 at % Fe and alloys similar to its constituent β′ and γ/γ′ phases, Ni-30 at % Al-20 at % Fe and Ni-12 at % Al-40 at % Fe, respectively, were investigated. When tested in tension at 300 K, the alloys exhibited ≈ 20%, 2% and 28% elongation, respectively. At elevated test temperatures (700, 900 and 1100 K), the multi-phase alloy exhibited increased ductility, reaching an elongation in excess of 70% at 1100 K without necking or fracture. Similarly, the β′ alloy demonstrated increased ductility with increasing test temperatures. In contrast, the γ/γ′ alloy showed greatly reduced ductility with increasing temperature and was quite brittle both at 900 and 1100 K. Thus, whilst at room temperature the γ/γ′ phase improved the ductility of the β′ + γ/γ′ aggregate, at elevated temperatures the β′ phase alleviated the brittleness of the γ/γ′ phase, thereby preventing any embrittlement of the multi-phase alloy over the temperature range 300–1100 K. Also, whilst the β′ phase improved the room-temperature strength of the multi-phase alloy, at elevated temperatures where the β′ phase is known to be weak, the γ/γ′ phase improved the strength of the multi-phase alloy up to 900 K, beyond which the strength deteriorated due to disordering and lack of anomalous strengthening in the γ/γ′ component.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. GEORGE and C. T. LIU, J. Mater. Res. 5 (1990) 754.Google Scholar
  2. 2.
    P. NAGPAL and I. BAKER, Mater. Charact 27 (1991) 167.Google Scholar
  3. 3.
    K. H. HAHN and K. VEDULA, Scripta Metall 23 (1989) 7.Google Scholar
  4. 4.
    P. NAGPAL and I. BAKER, ibid. 24 (1990) 2381.Google Scholar
  5. 5.
    S. GUHA, P. R. MUNROE and I. BAKER, ibid. 23 (1989) 897.Google Scholar
  6. 6.
    S. GUHA, I. BAKER, P. R. MUNROE and J. R. MICHAEL, Mater. Sci. Eng. A152 (1992) 2588.Google Scholar
  7. 7.
    S. GUHA, P. R. MUNROE and I. BAKER, Proc. MRS 133 (1989) 533.Google Scholar
  8. 8.
    Idem, Mater. Sci. Eng. A131 (1991) 27.Google Scholar
  9. 9.
    I. BAKER, S. GUHA and J. A. HORTON, Philos. Mag. A67 (1993) 663.Google Scholar
  10. 10.
    S. GUHA, I. BAKER and P. MUNROE, Mater. Charact (1995) in press.Google Scholar
  11. 11.
    A. Z. ROZNER and WASILEWSKI, J. Inst. Metals 94 (1996) 169.Google Scholar
  12. 12.
    R. T. PASCOE and C. W. A. NEWEY, Met. Sci. 2 (1968) 138.Google Scholar
  13. 13.
    I. BAKER and P. R. MUNROE, in “High Temperature Aluminides and Intermetallics”, edited by S. H. WHANG, C. T. LIU, D. P. POPE, J. P. STEIGLER (TMS, Indianapolis, IN, 1990) p. 425.Google Scholar
  14. 14.
    M. F. SINGLETON, J. L. MURRAY and P. NASH, in “Binary Alloy Phase Diagrams I”, edited by T. B. MASSALSKI (ASM, Metals Park, OH, 1986) p. 142.Google Scholar
  15. 15.
    C. T. LIU, C. L. WHITE and E. H. LEE, Scripta Metall. 19 (1985) 1247.Google Scholar
  16. 16.
    J. A. HORTON, C. T. LIU and M. L. SANTELLA, Metall. Trans. 18A (1987) 1265.Google Scholar
  17. 17.
    R. D. NOEBE, R. R. BOWMAN, J. T. KIM, M. LARSEN and R. GIBALLA, in “High Temperature Aluminides and Intermetallics” edited by S. H. WHANG, C. T. LIU, D. P. POPE and J. P. STEIGLER (TMS, Indianapolis, IN, 1990) p. 271.Google Scholar
  18. 18.
    S. C. HUANG, R. D. FIELD and D. D. KRUEGER, Metall. Trans. 21A (1990) 959.Google Scholar
  19. 19.
    S. V. RAJ, R. D. NOEBE and I. E. LOCCI, in “High Temperature Ordered Intermetallic Alloys IV”, edited by Johnson, B. P. Pope and J. P. Steigler, Materials Research Society Symposium Proceedings, Vol 213 (MRS, 1991) p. 673.Google Scholar
  20. 20.
    P. BEARDMORE, R. G. DAVIES and T. L. JOHNSTON, Trans. AIME 245 (1969) 1537.Google Scholar
  21. 21.
    C. H. LLOYD and M. H. LORETTO, Phys. Status Solidi 39 (1970) 163.Google Scholar
  22. 22.
    N. J. ZALUZEC and H. L. FRASER, Scripta Metall. 8 (1974) 1049.Google Scholar
  23. 23.
    A. LASALMONIE, J. Mater. Sci. 17 (1982) 2419.Google Scholar
  24. 24.
    I. BAKER and E. M. SCHULSON, Metall. Trans. 15A (1984) 1129.Google Scholar
  25. 25.
    G. W. GROVES and A. KELLY, Philos. Mag. 8 (1963) 877.Google Scholar
  26. 26.
    R. VON MISES, Z. Agnew Math. Mech. S. (1928) 161.Google Scholar
  27. 27.
    A. BALL and R. E. SMALLMAN, Acta. Metall. 14 (1966) 1517.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • S. Guha
    • 1
  • I. Baker
    • 1
  • P. R. Munroe
    • 2
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.School of Materials Science and EngineeringUniversity of New South WalesKensingtonAustralia
  3. 3.MER Corp.TucsonUSA

Personalised recommendations