Current Genetics

, Volume 22, Issue 5, pp 345–355 | Cite as

Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase

  • B. Y. Tréton
  • M. -T. Le Dall
  • C. M. Gaillardin
Original Articles


A Yarrowia lipolytica gene library was constructed in vector YRp7 and transformed into a Saccharomyces cerevisiae strain lacking both major acid phosphatase activities. A 2.18 kb genomic sequence restoring the ability to hydrolyze α-naphthyl phosphate was isolated. Its sequencing revealed an ORF encoding 358 amino acids without significant homology with any known phosphatase. A putative signal peptide and several possible sites for N-glycosylation were identified. Phosphate-regulated expression of the cloned gene was observed in Y. lipolytica. Disruption data favoured the hypothesis that it might encode a minor phosphatase species.

Key words

Acid phosphatase Heterologous complementation Yarrowia lipolytica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altikrete H, Kouri M, Charpentier C, Lematre J, Bonaly R (1984) Phytochemistry 23:1551–1555Google Scholar
  2. Ammerer G (1983) Methods Enzymol 101:192–201Google Scholar
  3. Bergman LW, McClinton DC, Madden SL, Preis LH (1986) Proc Natl Acad Sci USA 83:6070–6074Google Scholar
  4. Bostian KA, Lemire JM, Halvorson HO (1983) Mol Cell Biol 3:839–853Google Scholar
  5. Boyer H, Roulland-Dussoix D (1969) J Bacteriol 41:459–472Google Scholar
  6. Bradford MM (1976) Anal Biochem 72:248–254Google Scholar
  7. Casadaban MJ, Chou J, Cohen SN (1980) J Bacteriol 143:971–980Google Scholar
  8. Chifflet S, Torriglia A, Chiesa R, Tolosa S (1988) Anal Biochem 168:1–4Google Scholar
  9. Chomczynski P, Sacchi N (1987) Anal Biochem 162:156–159Google Scholar
  10. Clarke L, Carbon J (1976) Cell 9:91–99Google Scholar
  11. Dagert M, Ehrlich SD (1979) Gene 6:23–28Google Scholar
  12. Davidow LS, Apostolakos D, O'Donnell MM, Proctor AR, Ogrydziak DM, Wing RA, Stasko I, DeZeeuw JR (1985) Curr Genet 10:39–48Google Scholar
  13. Davidow LS, Kaczmarek FS, DeZeeuw JR, Conlon SW, Lauth MR, Pereira DA, Franke AE (1987a) Curr Genet 11:377–383Google Scholar
  14. Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, DeZeeuw JR, Franke AE (1987b) J Bacteriol 169:4621–4629Google Scholar
  15. Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 116–217Google Scholar
  16. Dibenedetto G (1972) Biochim Biophys Acta 286:363–374Google Scholar
  17. Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637Google Scholar
  18. Gaillardin CM, Heslot H (1988) J Basic Microbiol 28:161–174Google Scholar
  19. Gaillardin CM, Ribet A-M (1987) Curr Genet 11:369–375Google Scholar
  20. Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92:69–83Google Scholar
  21. Gaillardin CM Ribet A-M, Heslot H (1985) Curr Genet 10:49–58Google Scholar
  22. Günther T, Kattner W (1968) Z Naturforsch 236:77–80Google Scholar
  23. Haguenauer-Tsapis R, Hinnen A (1984) Mol Cell Biol 4:2668–2675Google Scholar
  24. Heijne G von (1983) Eur J Biochem 133:17–21Google Scholar
  25. Heijne G von (1986) Nucleic Acids Res 14:4683–4690Google Scholar
  26. Heredia CF, Yen F, Sols A (1963) Biochem Biophys Res Commun 10:14–18Google Scholar
  27. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  28. Hoffman CS, Winston F (1987) Gene 57:267–272Google Scholar
  29. Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986) Gene 42:169–173Google Scholar
  30. Holmes DS, Quigley M (1981) Anal Biochem 114:193–197Google Scholar
  31. Hubbard SC, Ivatt RJ (1981) Annu Rev Biochem 50:555–583Google Scholar
  32. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  33. Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Cell 37:1075–1089Google Scholar
  34. Lopez MC (1989) Purificacion y caracterizacion de una fosfatasa acida reprimible de Yarrowia lipolytica. Estudio del procesamiento y aislamiento de una secuencia genica. Thesis, University of Salamanca, SpainGoogle Scholar
  35. Lopez MC, Dominguez A (1988) J Basic Microbiol 28:249–263Google Scholar
  36. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  37. Meyhack B, Bajwa W, Rudolph H, Hinnen A (1982) EMBO J 1:675–680Google Scholar
  38. Miller JH (1972) Experiments in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  39. Moran A, Burguillo FJ, Lopez MC, Dominguez A (1989) Biochim Biophys Acta 990:288–296Google Scholar
  40. Nakao J, Miyanohara A, Toh-e A, Matsubara K (1986) Mol Cell Biol 6:2613–2623Google Scholar
  41. Nicaud J-M, Fabre E, Beckerich J-M, Fournier P, Gaillardin CM (1989) J Biotechnol 12:285–298Google Scholar
  42. Odds FC, Hierholzer JC (1973) J Bacteriol 114:257–266Google Scholar
  43. Ogrydziak DM, Cheng SC, Scharf J (1982) J Gen Microbiol 128:2271–2280Google Scholar
  44. Oshima Y (1982) Regulatory circuits for gene expression: the metabolism of galactose and phosphate. Regulation of phosphatases. in: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 168–180Google Scholar
  45. Perlman D, Halvorson HO (1983) J Mol Biol 167:391–409Google Scholar
  46. Rogers DT, Lemire JM, Bostian KA (1982) Proc Natl Acad Sci USA 79:2157–2161Google Scholar
  47. Roomans GM, Borst-Pauwels GWFH (1979) Biochem J 178:521–527Google Scholar
  48. Rothstein RJ (1983) Methods Enzymol 101:202–211Google Scholar
  49. Rubin GM (1974) Eur J Biochem 41:197–202Google Scholar
  50. Rudolph H, Hinnen A (1987) Proc Natl Acad Sci USA 84:1340–1344Google Scholar
  51. Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  52. Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  53. Sidhu RS, Bollon AP (1990) Yeast 6:221–229Google Scholar
  54. Silve S, Monod M, Hinnen A, Haguenauer-Tsapis R (1987) Mol Cell Biol 7:3306–3314Google Scholar
  55. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  56. Tonino GJM, Stein-Parvé EP (1963) Biochim Biophys Acta 67:453–469Google Scholar
  57. Trimble RB, Maley F, Watorek W (1981) J Biol Chem 256:10037–10043Google Scholar
  58. Weimberg R, Orton WL (1964) J Bacteriol 88:1743–1754Google Scholar
  59. Weimberg R, Orton WL (1966) J Bacteriol 91:1–13Google Scholar
  60. Xuan J-W, Fournier P, Gaillardin CM (1988) Curr Genet 14:15–21Google Scholar
  61. Xuan J-W, Fournier P, Declerck N, Chasles M, Gaillardin CM (1990) Mol Cell Biol 10:4795–4806Google Scholar
  62. Zaret KS, Sherman F (1982) Cell 28:563–573Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • B. Y. Tréton
    • 1
  • M. -T. Le Dall
    • 1
  • C. M. Gaillardin
    • 1
  1. 1.INRA, Laboratoire de Génétique Moléculaire et CellulaireCentre de Biotechnologies Agro-Industrielles, INA-PGThiverval-GrignonFrance

Personalised recommendations