Mammalian Genome

, Volume 6, Issue 9, pp 571–580 | Cite as

A family of rapidly evolving genes from the sex reversal critical region in Xp21

  • B. Dabovic
  • E. Zanaria
  • B. Bardoni
  • A. Lisa
  • C. Bordignon
  • V. Russo
  • C. Matessi
  • C. Traversari
  • G. Camerino
Original Contributions

Abstract

Patients with an intact SRY gene and duplications of portions of Xp21 develop as phenotypic females. We have recently mapped this sex reversal locus, DSS, to a 160-kb region of Xp21 that includes the adrenal hypoplasia congenita locus. To clone the gene(s) underlying DSS and AHC, we isolated expressed sequences quences from the region. Here we describe the characterization of two related genes. DAM10 and DAM6, expressed in adult testis and lung tumors. The predicted DAM10 and DAM6 proteins are 66% identical and are both highly similar to the MAGE family of tumor-associated antigens and to mouse necdin. Genes belonging to the MAGE superfamily, DAMs, MAGEs, and necdin, are likely to have originated from a common ancestor and to be subject to an unusually rapid evolution. The tumor-restricted expression of DAM proteins and their structural similarity to MAGE genes suggest that DAM peptides may be targets for active immunotherapy in lung cancer patients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardoni, B., Zanaria, E., Guioli, S., Floridia, G., Worley, K.C., Tonini, G., Ferrante, E., Chiumello, G., McCabe, E.R.B., Zuffardi, O., Camerino, G. (1994). A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nature Genet 7, 497–501.Google Scholar
  2. De Plaen, E., Arden, K., Traversari, C., Gaforio, J.J., Szikora, J.-P., de Smet, C., Brasseur, F., van der Bruggen, P., Lethe, B., Lurquin, C., Brasseur, R., Chomez, P., de Brecker, O., Cavenee, W., Boon, T. (1994). Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Imunogenetics 40, 360–369.Google Scholar
  3. Eicher, E.M., Washburn, L.L., Whitney, J.B., Morrow, K.E. (1982). Mus pochiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217, 535–537.Google Scholar
  4. Felsenstein, J. (1993) PHYLIP (Phylogeny Inference package) Ver. 3.5c. University of Washington, Seattle.Google Scholar
  5. Franco, B., Guioli, S., Pragliola, A., Incerti, B., Bardoni, B., Tonlorenzi, R., Carrozzo, R., Maestrini, E., Pieretti, M., Taillom-Miller, P., Brown, C.J., Willard, H.F., Lawrence, C., Persico, M., Camerino, G., Ballabio, A. (1991). A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353, 529–536.Google Scholar
  6. German, J.L., Simpson, J.L., Chaganti, R.S.K., Summit, R.L., Reid, L.B., Merkarz, I.R. (1978) Genetically determined sex-reversal in 46,XY humans. Science 202, 53–56.Google Scholar
  7. Higgins, D.G., Bleasby, A.J., Fuchs, S.R. (1992). CLUSTAL V improved software for multiple sequence alignment. CABIOS (England) 8, 189–191.Google Scholar
  8. Hill, R.E., Hastie, N.D. (1987). Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 326, 96–99.Google Scholar
  9. Hughes, A.L., Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci: evidence for overdominant selection. Nature 335, 167–170.Google Scholar
  10. Hughes, A.L., Nei, M. (1989). Nucleotide substitutions at major histocompatibility complex class II loci: evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 86, 958–962.Google Scholar
  11. Hurst, L.D. (1994). Embryonic growth and the evolution of the mammalian Y chromosome. II. Suppression of selfish Y-linked growth factor may explain escape from X-inactivation and rapid evolution of Sry. Heredity 73, 233–243.Google Scholar
  12. Jukes, T.H., Cantor, C.R. (1969). Evolution of protein molecules. In Mammalian Protein Metabolism H.N. Munro, ed. (New York: Academic Press) pp. 21–132.Google Scholar
  13. Korn, B., Sedlacek, Z., Manca, A., Kioschis, P., Konecki, D., Lehrach, H., Poutska, A. (1992). A strategy for the selection of transcribed sequences in the Xq28 region. Hum. Mol. Genet. 4, 235–242.Google Scholar
  14. Kozak, M. (1984) Compilation and analysis of sequences upstream from the translation start site in eukaryotic mRNAs. Nucleic Acids Res 12, 857–872.Google Scholar
  15. Li, W.H., Graur, D. (1991) Fundamentals of Molecular Evolution. (Sunderland, Mass: Sinauer Associates, Inc.), pp. 68–71.Google Scholar
  16. Maruyama, K., Usami, M., Aizawa, T., Yoshikawa, K. (1991). A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neutrally differentiated embryonal carcinoma cells. Biochem. Biophys. Res. Commun. 178, 291–296.Google Scholar
  17. Muscatelli, F., Strom, T., Walker, A.P., Zanaria, E., Recan, D., Meindl, A., Bardoni, B., Guioli, S., Zehetner, G., Rabl, W., Schwarz, H.P., Kaplan, J.C., Camerino, G., Meitinger, T., Monaco, A. (1994). Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676.Google Scholar
  18. Nei, M., Gojobori, T. (1986). Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426.Google Scholar
  19. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  20. Stephen, A.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.Google Scholar
  21. Teague, P.W., Aldred, M.A., Jay, M., Dempster, M., Harrison, C., Carothes, A.D. Hardwick, L.J. Evans, H.J., Strain, L., Brock, D.J.H., Bundey, S., Jay, B., Bird, A.C., Battacharya, S.S., Wright, A.F. (1994). Heterogeneity analysis in 40 X-linked retinitis pigmentosa families. Am. J. Hum. Genet. 55, 105–111.Google Scholar
  22. Tucker, P.K., Lundrigan, B.L. (1993). Rapid evolution of the sex determining locus in Old World mice and rats. Nature 364, 715–717.Google Scholar
  23. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., Boon, T. (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647.Google Scholar
  24. Walker, A.P., Chelly, J., Love, D.R., Ishikawa Brush, Y., Recan, D.M., Chaussain, J.-L., Oley, C.A., Connor, J.M., Yates, J., Price, D.A., Super, M., Bottani, A., Steinman, B., Kaplan, J.-K., Davies, K.E., Monaco, A.P. (1992). A YAC contig in Xp21 containing the adrenal hypoplasia congenita and glycerol kinase deficiency genes. Hum. Mol. Genet. 1, 579–585.Google Scholar
  25. Wang, M.G. Zakut, H., Yi, H., Rosenberg, S., Mc Bride, O.W. (1994). Localization of the MAGE1 gene encoding human melanoma antigen to chromosome Xq28. Cytogenet. Cell Genet 67, 116–119.Google Scholar
  26. Whitfield, L.S., Lovell-Badge, R., Goodfellow, P.N. (1993). Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364, 713–715.Google Scholar
  27. Wolfe, K.H., Sharp, P.M. (1993). Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J. Mol. Evol. 37, 441–456.Google Scholar
  28. Worley, K.C., Towbin, J.A., Zhu, X.M., Barker, D.F., Ballabio, A., Chamberlain, J., Biesecker, L.G., Blethen, S.L., Fox, J.E., Rizzo, W.B., Romeo, G., Sakuragawa, N., Seltzer, W.K., Yamaguchi, S., McCabe, E.R.B. (1992). Identification of new markers in Xp21 between DXS 28 (C7) and DMD. Genomics 13, 957–961.Google Scholar
  29. Worley, K.C., Ellison, K.A., Zhang, Y.-H., Wang, D.-F., Mason, J., Roth, Adams V., Fogt, D.D., Zhu, X.M., Towbi N, J.-A., Chijinault, A.C., Zoghbi, H., McCabe, E.R.B. (1993). Yeast artificial chromosome cloning in the glycerol kinase and adrenal hypoplasia congenita region in Xp21. Genomics 16, 407–416.Google Scholar
  30. Zanaria, E., Muscatelli, F., Bardoni, B., Strom, T., Guioli, S., Guo, W., Lalli, E., Moser C, Walker, A., McCabe, E.R.B., Meitinger, T., Monaco, A., Sassone-Corsi, P., Camerino, G. (1994). An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • B. Dabovic
    • 1
  • E. Zanaria
    • 1
  • B. Bardoni
    • 1
  • A. Lisa
    • 2
  • C. Bordignon
    • 3
  • V. Russo
    • 3
  • C. Matessi
    • 2
  • C. Traversari
    • 3
  • G. Camerino
    • 1
    • 4
  1. 1.Biologia Generale e Genetica MedicaUniversita di PaviaPaviaItaly
  2. 2.Istituto di Genetica Biochimica ed EvoluzionisticaCNRPaviaItaly
  3. 3.Gene therapy program, DIBITIst. Scientifico H.S. RaffaeleMilanoItaly
  4. 4.Istituto di Istologia ed EmbriologiaUniversita di SassariSassariItaly

Personalised recommendations