Mammalian Genome

, Volume 1, Issue 4, pp 211–216 | Cite as

Intrachromosomal location of the telomeric repeat (TTAGGG)n

  • Bernhard Weber
  • L. Allen
  • R. Ellen Magenis
  • P. J. Goodfellow
  • L. Smith
  • Michael R. Hayden
Original Contributions


Eukaryotic telomeres are specialized DNA-protein structures that are thought to ensure chromosomal stability and complete replication of the chromosome ends. All telomeres which have been studied consist of a tandem array of G-rich repeats which seem to be sufficient for telomere function. Originally, the human telomeric repeat (TTAGGG)n was assumed to be exclusively located at the very end of all human chromosomes. More recent evidence, however, suggests an extension into proterminal regions. Very little is known about the interstitial distribution of telomeric repeats. Here we present evidence for the presence of (TTAGGG)n repeats in internal loci on the long and short arms of different human chromosomes. In addition, we studied the genomic organization of these repeats in more detail and discuss possible functions of interstitial telomeric repeats in the human genome.


Human Genome Human Chromosome Genomic Organization Telomeric Repeat Internal Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard, D.A. and Sedat, J.W.: Three-dimensional architecture of a polytene nucleus. Nature 302: 676–681, 1983.Google Scholar
  2. Allshire, R.C., Gosen, J.R., Cross, S.H., Cranston, G., Rout, D., Sugawara, N., Szostak, J.W., Fantes, P.A., and Hastie, N.D.: Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature 332: 656–659, 1988.Google Scholar
  3. Astrin, K.H., Warner, C.A., Yoo, H.-W., Goodfellow, P.J., Tsai, S.-F., and Desnick, R.J.: Regional assignment of the human uroporphinogen III synthase (UROS) gene to chromosome 10q25.2–q26.3. Hum Genet, in press, 1991.Google Scholar
  4. Blackburn, E.H.: Telomeres and their synthesis. Science 249: 489–490, 1990.Google Scholar
  5. Blackburn, E.H. and Szostak, J.W.: The molecular structure of centromeres and telomeres. Ann Rev Biochem 53: 163–194, 1984.Google Scholar
  6. Brooks-Wilson, A.R., Goodfellow, P.N., Povey, S., Nevanlinna, H.A., de Jong, P.J., and Goodfellow, P.J.: Rapid cloning and characterization of new chromosome 10 DNA markers by Alu element-mediated PCR. Genomics 7: 614–620, 1990.Google Scholar
  7. Brown, W.R.A., MacKinnon, P.J., Villasante, A., Spurr, N., Buckle, V.J., and Dobson, M.J.: Structure and polymorphism of human telomere-associated DNA. Cell 63: 119–132, 1990.Google Scholar
  8. Chandley, A.C.: Asymmetry in chromosome pairing: A major factor in de novo mutation and the production of genetic disease in man. J Med Genet 26: 546–552, 1989.Google Scholar
  9. Cheng, J.F., Smith, C.L., and Cantor, C.R.: Isolation and characterization of a human telomere. Nucl Acids Res 17: 6109–6127, 1989.Google Scholar
  10. Church, G.M. and Gilbert, W.: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995, 1984.Google Scholar
  11. Cooke, H.J. and Smith, B.A.: Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harbor Symp Quant Biol 51: 213–219, 1986.Google Scholar
  12. Cross, S., Lindsey, J., Fantes, J., McKay, S., McGill, N., and Cook, H.: The structure of a subterminal repeated sequence present on many human chromosomes. Nucl Acids Res 18: 6649–6657, 1990.Google Scholar
  13. DeLange, T., Shine, L., Myers, R., Cox, D.R., Naylor, S.L., Killery, A.M., and Varmus, H.E.: Structure and variability of human chromosome ends. Mol Cell Biol 10: 518–527, 1990.Google Scholar
  14. Dutrillaux, B.: Chromosomal evolution in primates: Tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48: 251–314, 1979.Google Scholar
  15. Greider, C.W. and Blackburn, E.H.: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413, 1985.Google Scholar
  16. Harper, M.E. and Saunders, G.F.: Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83: 431–439, 1981.Google Scholar
  17. Hastie, D.A. and Allshire, R.C.: Human telomeres: Fusion and interstitial sites. TIG 5: 326–331, 1989.Google Scholar
  18. Lejeune, J., Dutrillaux, B., Rethore, M.D., and Prieur, M.: Comparison de la structure fine des chromatides d'Homo sapiens et de Pan troglodytes. Chromosoma 43: 423–444, 1973.Google Scholar
  19. Morin, G.B.: The human telomere transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59: 521–529, 1989.Google Scholar
  20. Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., and Wu, J.-R.: A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626, 1988.Google Scholar
  21. Rasmussen, S.W. and Holm, P.B.: Human meiosis. II. Chromosome pairing and recombination nodules in human spermatocytes. Carlsberg Res Commun 43: 275–327, 1978.Google Scholar
  22. Rouyer, F., de la Chapelle, A., Andersson, M., and Weissenbach, J.: An interspersed repeated sequence specific for human subtelomeric regions. EMBO J 9: 505–514, 1990.Google Scholar
  23. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R.G., Horn, T.T., Mullis, K.B., and Erlich, H.A.: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988.Google Scholar
  24. Sambrook, J., Fritsch, E.F., and Maniatis, T.: Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, New York, 1989.Google Scholar
  25. Schweizer, D.: Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogenet Cell Genet 27: 190–193, 1980.Google Scholar
  26. Sutherland, G.R. and Hecht, F.: Fragile sites on human chromosomes. In Oxford Monographs on Medical Genetics, vol. 13, Oxford University Press, New York, 1985.Google Scholar
  27. Vogt, P.: Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatim folding code.” Hum Genet 84: 301–336, 1990.Google Scholar
  28. Weber, B., Allen, L., Magenis, R.E., and Hayden, M.R.: A low copy repeat located in the subtelomeric regions of 14 different human chromosomal termini, Cytogenet Cell Genet in press, 1991.Google Scholar
  29. Weber, B., Collins, C., Robbins, C., Magenis, R.E., Delaney, A.D., Gray, J.W., and Hayden, M.R.: Characterization and organization of DNA sequences adjacent to the human telomere associated repeat (TTAGGG)n. Nucl Acids Res 18: 3353–3361, 1990.Google Scholar
  30. Wells, R.A., Germino, G.G., Krishna, S., Buckle, V.J., and Reeders, S.T.: Telomere-related sequences at interstitial sites in the human genome. Genomics 8: 699–704, 1990.Google Scholar
  31. Wilkie, A.O.M., Lamb, J., Harris, P.C., Finney, R.D., and Higgs, D.R.: A truncated human chromosome 16 associated with α-thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346: 868–871, 1990.Google Scholar
  32. Zahler, A.M. and Prescott, D.M.: Telomere terminal transferase activity in the hypotrichous ciliate oxytricha nova and a model for replication of the ends of linear DNA molecules. Nucl Acids Res 16: 6953–6972, 1988.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Bernhard Weber
    • 1
  • L. Allen
    • 2
  • R. Ellen Magenis
    • 2
  • P. J. Goodfellow
    • 1
  • L. Smith
    • 2
  • Michael R. Hayden
    • 1
  1. 1.Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Medical GeneticsOregon Health Sciences UniversityPortlandUSA

Personalised recommendations