Advertisement

Chromosoma

, Volume 102, Issue 1, pp 15–19 | Cite as

Replication forks are not found in a Drosophila minichromosome demonstrating a gradient of polytenization

  • Robert L. Glaser
  • Gary H. Karpen
  • Allan C. Spradling
Original Articles

Abstract

Differential DNA replication is widely held to influence polytene chromosome structure by causing the dramatic reductions in heterochromatic DNA content that are characteristic of most endopolyploid cells. The “underreplication model” of heterochromatic sequence underrepresentation predicts that replication intermediates should populate regions of DNA between fully polytenized euchromatic sequences and underpolytenized heterochromatic sequences. We directly tested this prediction using Dp1187, a 1300 kb Drosophila minichromosome containing well-defined heterochromatic regions. DNA from a euchromatic/heterochromatic junction region of Dp1187, demonstrating a significant gradient of underrepresentation in larval salivary glands, lacked the stalled replication forks predicted by the underreplication model. We consider an alternative mechanism leading to heterochromatic sequence underrepresentation involving a process of DNA elimination.

Keywords

Salivary Gland Alternative Mechanism Dramatic Reduction Replication Fork Chromosome Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1970) Function and structure of polytene chromosomes during insect development. Adv Insect Physiol 7: 1–95Google Scholar
  2. Ashburner M (1980) Some aspects of the structure and function of the polytene chromosomes of the Diptera. In: Blackman RM, Hewitt GM, Ashburner M (eds) Insect Cytogenetics 10. Blackwell Scientific Publications, Oxford, pp 65–84Google Scholar
  3. Beermann S (1977) The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344Google Scholar
  4. Berendes HD, Keyl HG (1967) Distribution of DNA in heterochromatin and euchromatin of polytene nuclei of Drosophila hydei. Genetics 57: 1–13Google Scholar
  5. Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471Google Scholar
  6. Brodsky VY, Uryvaeva IV (1985) Genome multiplication in growth and development. Cambridge University Press, CambridgeGoogle Scholar
  7. Campuzano S, Carramolino L, Cabrera CV, Ruiz-Gomez M, Villares R, Boronat A, Modolell J (1985) Molecular genetics of the achaeta-scute gene complex of Drosophila. Cell 40: 327–338Google Scholar
  8. Church G, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995Google Scholar
  9. Dijkwel PA, Vaughn JP, Hamlin JL (1991) Mapping of replication initiation sites in mammalian genomes by two-dimensional gel analysis: stabilization and enrichment of replication intermediates by isolation on the nuclear matrix. Mol Cell Biol 11: 3850–3859Google Scholar
  10. Gall JG, Cohen EH, Polan ML (1971) Repetitive DNA sequences in Drosophila. Chromosoma 33: 319–344Google Scholar
  11. Heck M, Spradling A (1990) Multiple replication origins are used during Drosophila chorion gene amplification. J Cell Biol 110: 903–914Google Scholar
  12. Heitz E (1934) Über α- und β-Heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol Zentralbl 54: 588–609Google Scholar
  13. Hennig W (1986) Germ-Line Soma Differentiation. Springer-Verlag, BerlinGoogle Scholar
  14. Karpen GH, Spradling AC (1990) Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila. Cell 63: 97–107Google Scholar
  15. Keyl HG, Hägele K (1966) Heterochromatin-Proliferation an den Speicheldrüsen-Chromosomen von Chironomus melanotus. Chromosoma 19: 223–230Google Scholar
  16. Laird CD (1973) DNA of Drosophila chromosomes. Ann Rev Genet 7: 177–204Google Scholar
  17. Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press, New YorkGoogle Scholar
  18. Meyer GF, Lipps HJ (1984) Electron microscopy of surface spread polytene chromosomes of Drosophila and Stylonchia. Chromosoma 89: 107–110Google Scholar
  19. Rudkin GT (1963) The structure and function of heterochromatin. In: Genetics today. Proc XI Int Cong Genetics. The Hague: Pergamon Press, pp 359–374Google Scholar
  20. Samols D, Swift H (1979) Characterization of extrachromosomal DNA in the flesh fly Sarcophaga bullata. Chromosoma 75: 145–159Google Scholar
  21. Spradling AC (1981) The organization and amplification of two clusters of Drosophila chorion genes. Cell 27: 193–202Google Scholar
  22. Spradling AC, Orr-Weaver T (1987) Regulation of DNA replication during Drosophila development. Ann Rev Genet 21: 373–403Google Scholar
  23. Tobler H (1986) The differentiation of germ and somatic cell lines in nematodes. In: Hennig W (ed) Germ-Line Soma Differentiation. Springer-Verlag, BerlinGoogle Scholar
  24. Yamamoto M-T, Mitchelson A, Tudor M, O'Hare K, Davies JA, Miklos GLG (1990) Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. Genetics 125: 821–832Google Scholar
  25. Yao MC (1989) Site-specific chromosome breakage and DNA detetion in ciliates. In: Berg D, Howe M (eds) Mobile DNA. ASM Publications, Washington, DCGoogle Scholar
  26. Wolf EB, Sokoloff S (1977) Migration of α-heterochromatin from the giant X chromosome of the gnat Phryne cincta. Chromosomes today 4: 129–142Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Robert L. Glaser
    • 1
  • Gary H. Karpen
    • 1
  • Allan C. Spradling
    • 1
  1. 1.Howard Hughes Medical Institute Research LaboratoriesCarnegie Institution of WashingtonBaltimoreUSA

Personalised recommendations