Chromosoma

, Volume 104, Issue 4, pp 252–259 | Cite as

Characterization and chromosomal location of two repeated DNAs in three Gerbillus species

  • V. Volobouev
  • N. Vogt
  • E. Viegas-Péquignot
  • B. Malfoy
  • B. Dutrillaux
Article

Abstract

Two tandemly repeated DNA sequences of Gerbillus nigeriae (Rodentia) (GN1 and GN2) were isolated and characterized. Both share a 36 bp repeated unit, which includes a 20 bp motif also found in primate alphoid and other repeated DNAs. The localization of GN1 and GN2 sequences on metaphase chromosomes of three Gerbillus species, G. nigeriae, G. aureus and G. nanus, was studied by fluorescence in situ hybridization (FISH). In the G. nigeriae and G. aureus karyotypes, which were shown to possess large amounts of heterochromatin and to have undergone multiple rearrangements during evolution, both GN1 and GN2 sequences were observed at various chromosomal sites: centromeric, telomeric and intercalary. In contrast, the karyotypically stable G. nanus, which does not possess large amounts of heterochromatin and seems to be a more ancestral species, possesses only GN1 sequences, localized in the juxtacentromeric regions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida A, Kokalj-Vokac N, Lefrancois D, Viegas-Pequignot E, Jeanpierre M, Dutrillaux B, Malfoy B (1993) Hypomethylation of classical satellite DNA and chromosome instability in lymphoblastoid cell lines. Hum Genet 91: 538–546Google Scholar
  2. Arnason U (1987) The evidence for a common ancestry of toothed and baleen whales based on studies of chromosomes and highly repetitive DNA. La Kromosoma II-45: 1479–1488Google Scholar
  3. Arnason U, Widegren B (1989) Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus. Chromosoma 98: 323–329Google Scholar
  4. Bachvarov DR, Markov GG, Ivanov IG (1987) Sequence heterogeneity of the human alphoid satellite DNA and thermal stability of mismatched alphoid DNA duplexes. Int J Biochem 19: 963–971Google Scholar
  5. Bogenberger JM, Neitzel H, Fittler F (1987) A highly repetitive component common to all Cervidae: its organization and chromosomal distribution during evolution. Chromosoma 95: 154–161Google Scholar
  6. Brutlag DL (1980) Molecular arrangement and evolution of heterochromatic DNA. Annu Rev Genet 14: 121–144Google Scholar
  7. Corach D (1990) Repetitive DNA sequence homologies and amplifications in South American cricetid rodents. Genetica 82: 85–92Google Scholar
  8. Denovan EM, Wright JM (1990) A satellite DNA family from pollock (Pollachius viren). Gene 87: 279–283Google Scholar
  9. Dessen P, Fondrat C, Valencien C, Mugnier C (1990) Bisance: a French service for access to biomolecular sequence data bases. Cabios 6: 355–356Google Scholar
  10. Dod B, Mottez E, Desmarais E, Bonhomme F, Roizes G (1989) Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol Biol Evol 6: 478–491Google Scholar
  11. Dutrillaux B, Couturier J, Viégas-Pequignot E (1986) Evolution chromosomique des Platyrhiniens. Mammalia 50: 56–81Google Scholar
  12. Fanning TG, Modi WS, Wayne RK, O'Brien SJ (1988) Evolution of heterochromatin-associated satellite DNA in felids and canids (Carnivora). Cytogenet Cell Genet 48: 214–219Google Scholar
  13. Fry K, Salser W (1977) Nucleotide sequences of Hs-alpha satellite DNA from kangaroo rat, Dipodomys ordii, and characterization of similar sequences in other rodents. Cell 12: 1069–1084Google Scholar
  14. Hamilton MJ, Honeycutt RL, Baker RJ (1990) Intragenomic movement, sequence amplification and concerted evolution in satellite DNA in harvest mice, Reithrodontomys: evidence from in situ hybridization. Chromosoma 99: 321–329Google Scholar
  15. Hatch FT, Bonder AJ, Mazrimas JA, Moore DH (1976) Satellite DNA and cytogenetic evolution: DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma 58: 155–168Google Scholar
  16. Jordan RG, Davis BL, Baccar H (1974) Karyotypic and morphometric studies of Tunisian Gerbillus. Mammalia 38: 667–680Google Scholar
  17. Jorgensen AL, Bostock CJ, Bak AL (1986) Chromosome-specific subfamilies within human alphoid repetitive DNA. J Mol Biol 185–196Google Scholar
  18. Jorgensen AL, Jones C, Bostock CJ, Bak AL (1987) Different subfamilies of alphoid repetitive DNA are present on the human chimpanzee homologous 21 and 22. EMBO J 6: 1691–1696Google Scholar
  19. Jorgensen AL, Koelvraa S, Jones C, Bak AL (1988) A subfamily of alphoid repetitive DNA shared by the NOR-bearing human chromosomes 14 and 22. Genomics 3: 100–109Google Scholar
  20. Jorgensen AL, Laursen HB, Jones C, Bak AL (1992) Evolutionarily different alphoid repeat DNA on homologous chromosomes in human and chimpanzee. Proc Natl Acad Sci USA 89: 3310–3314Google Scholar
  21. Kiyama R, Matsui H, Oishi M (1986) A repetitive DNA family (Sau3A family) in human chromosomes: extrachromosomal DNA and DNA polymorphism. Proc Natl Acad Sci USA 83: 4665–4669Google Scholar
  22. Laursen HB, Jorgensen AL, Jones C, Bak AL (1992) Higher rate of evolution of X chromosome alpha-repeat DNA in human than in the great apes. EMBO J 11: 2367–2372Google Scholar
  23. Lima-de-Faria A, Arnason V, Widegreen B, Essen-Moller J, Isakson N, Olsson E, Jaworska H (1984) Conservation of repetitive DNA sequences in deer species studied by Southern blot transfer. J Mol Evol 20: 17–24Google Scholar
  24. Mashkova TD, Akopian TA, Romanova LY, Mitkevich SP, Yorov YB, Kisselev LL, Alexandrov IA (1994) Genomic organization, sequence and polymorphism of the human chromosome 4-specific alpha-satellite DNA. Gene 140: 211–217Google Scholar
  25. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963–1973Google Scholar
  26. Modi WS (1993) Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Cytogenet Cell Genet 62: 142–148Google Scholar
  27. Modi WS, Fanning TG, Wayne RK, O'Brien SJ (1988) Chromosomal localization of satellite DNA sequences among 22 species of felids and canids (Carnivora). Cytogenet Cell Genet 48: 208–213Google Scholar
  28. Rumpler Y, Dutrillaux B (1979) Chromosomal evolution in Malagasy lemurs. IV. Chromosome banding studies in the genuses Phaner, Varecia, Lemur, Microcebus and Cheirogaleus. Cytogenet Cell Genet 24: 224–232Google Scholar
  29. Sambrook J, Fritsch EP, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  30. Schmidtke J, Brennecke H, Schmid M, Neitzel H, Sperling K (1981) Evolution of muntjac DNA. Chromosoma 84: 187–193Google Scholar
  31. Shmookler Reis RJ, Srivastava A, Beranek DT, Goldstein S (1985) Human alphoid family of tandemly repeated DNA. Sequence of cloned tetrameric fragments and analysis of familial divergence. J Mol Biol 186: 31–41Google Scholar
  32. Smith DI, Rocchi M, Miller OJ, Miller DA (1989) A human alphoid DNA clone from the EcoRI dimeric family: genomic and internal organization and chromosomal assigment. Genomics 5: 822–828Google Scholar
  33. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306Google Scholar
  34. Thompson JD, Sylvester JE, Gonzalez IL, Costanzi CC, Gillespie D (1989) Definition of a second dimeric subfamily of human alpha satellite DNA. Nucleic Acids Res 17: 2769–2782Google Scholar
  35. Tong H (1989) Origine et évolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Mém Soc Géol France [Nouv Sér] 155: 1–120Google Scholar
  36. Tranier M (1975) Originalité du caryotype de Gerbillus nigeriae (Rongeurs, Gerbillidés). Mammalia 39: 703–704Google Scholar
  37. Trowell HE, Nagy A, Vissel B, Andy Choo KH (1993) Long-range analyses of the centrometric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum Mol Genet 2: 1639–1649Google Scholar
  38. Viegas-Péquignot E, Benazzou T, Dutrillaux B, Petter F (1982) Complex evolution of sex chromosomes in Gerbillidae (Rodentia). Cytogenet Cell Genet 34: 158–167Google Scholar
  39. Viegas-Péquignot E, Benazzou T, Prod'homme M, Dutrillaux B (1984) Characterization of very complex heterochromatin in two species of Gerbillus (Rodentia). Chromosoma 89: 42–47Google Scholar
  40. Viegas-Péquignot E, Petit D, Benazzou T, Prod'homme M, Lombard M, Hoffschir F, Descailleaux J, Dutrillaux B (1986) Phylogénie chromosomique chez les Sciuridae, Gerbillidae et Muridae, et étude d'espèces appartenant à d'autres familles de Rongeurs. Mammalia 50: 164–202Google Scholar
  41. Volobouev VT, Viegas-Péquignot E, Petter F, Gautin JC, Sicard B, Dutrillaux B (1988) Complex chromosomal polymorphism in Gerbillus nigeriae (Rodentia, Gerbillidae). J Mammal 69: 131–134Google Scholar
  42. Volobouev V, Lombard M, Tranier M, Dutrillaux B (1995) Chromosome banding study in Gerbillinae (Rodentia): I. Comparative analysis of Gerbillus poecilops, G. henleyi and G. nanus. J Zool Syst Evol 33: 54–61Google Scholar
  43. Wahrman J, Richler C, Neufeld E, Frieman A (1983) The origin of multiple sex chromosomes in Gerbillus gerbillus. Cytogenet Cell Genet 35: 161–180Google Scholar
  44. Waye JS, Willard HF (1985) Chromosome-specific alpha satellite DNa: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human I chromosome. Nucleic Acids Res 13: 2731–2743Google Scholar
  45. Weiss RB, Mineura K, Henderson EE, Duker NJ, DeRiel JK (1983) Enzymic detection of uracil in a cloned and sequenced deoxyribonucleic acid segment. Biochemistry 22: 4501–4507Google Scholar
  46. Wichman HA, Payne CT, Ryder OA, Hamilton MJ, Maltbie M, Baker RJ (1991) Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution. J Hered 82: 369–377Google Scholar
  47. Wijers R, Zijlstra C, Lenstra JA (1993) Rapid evolution of horse satellite DNA. Genomics 18: 113–117Google Scholar
  48. Wong AKC, Rattner JB (1988) Sequence organization and cytology of the minor satellite of mouse. Nucleic Acids Res 16: 11645–11661Google Scholar
  49. Wu ZA, Liu WX, Murphy C, Gall J (1990) Satellite DNA sequence from genomic DNA of the giant panda Ailuropoda melanoleuca. Nucleic Acids Res 18: 1054Google Scholar
  50. Zaitsev IZ, Rogaev EI (1986) Structural analysis of alphoid DNA of primates. Mol Biol 20: 530–538Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • V. Volobouev
    • 1
  • N. Vogt
    • 1
  • E. Viegas-Péquignot
    • 1
  • B. Malfoy
    • 1
  • B. Dutrillaux
    • 1
  1. 1.Institut Curie-CNRS UMR 147Paris Cedex 05France
  2. 2.U173 INSERMHôpital des Enfants MaladesParisFrance

Personalised recommendations