Current Genetics

, Volume 27, Issue 4, pp 320–329 | Cite as

Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals

  • Rajendra Prasad
  • Philippe De Wergifosse
  • Andre Goffeau
  • Elisabetta Balzi
Original Paper


By functional complementation of a PDR5 null mutant of Saccharomyces cervisiae, we have cloned and sequenced the multidrug-resistance gene CDR1 of Candida albicans. Transformation by CDR1 of a PDR5-disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to cycloheximide, chloramphenicol and other drugs, such as the antifungal miconazole, with collateral hypersensitivity to oligomycin, nystatin and 2,4 dinitrophenol. Our results also demonstrate the presence of several PDR5 complementing genes in C. albicans, displaying multidrug-resistance patterns different from PDR5 and CDR1. The nucleotide sequence of CDR1 revealed that, like PDR5, it encodes a putative membrane pump belonging to the ABC (ATP-binding cassette) superfamily. CDR1 encodes a 1501-residue protein of 169.9 kDa whose predicted structural organization is characterized by two homologous halves, each comprising a hydrophobic region with a set of six transmembrane stretches, preceded by a hydrophilic nucleotide binding fold.

Key words

Multidrug resistance Candida albicans Saccharomyces cerevisiae ABC transporters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) The multidrug-resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262: 16871–16879Google Scholar
  2. Balzi E, Goffeau A (1991) Multiple or pleiotropic drug resistance in yeast. Biochim Biophys Acta 11073: 241–252Google Scholar
  3. Balzi E, Goffeau A (1994) Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta 1187: 152–162Google Scholar
  4. Balzi E, Wang M, Leterme S, Van Dyck L, Goffeau A (1994) PDR5, a novel yeast multidrug-resistance-conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269: 2206–2214Google Scholar
  5. Chen W, Struhl K (1988) Saturation mutagenesis of a yeast his3 “TATA element”: genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci USA 85: 2691–2695Google Scholar
  6. Dear S, Staden R (1991) A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19: 3907–3911Google Scholar
  7. Dreesen TD, Johnson DH, Henikoff S (1988) The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol 8: 5206–5215Google Scholar
  8. Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125–142Google Scholar
  9. Fickett JW (1982) Recognition of protein-coding regions in DNA sequences. Nucleic Acids Res 10: 5303–5318Google Scholar
  10. Fling ME, Kopf J, Tamaarkin A, Gorman JA, Smith HA, Koltin Y (1991) Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate. Mol Gen Genet 227: 318–329Google Scholar
  11. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann Rev Biochem 66: 385–427Google Scholar
  12. Gros P, Croop J, Housman D (1986) Mammalian multidrug resistance gene: complete cDNA sequence indicates, strong homology to bacterial transport proteins. Cell 47: 371–380Google Scholar
  13. Heinic GS, Stevens DA, Greenspan D, MacPhail LA, Dodd CL, Stringari S, Strull WM, Hollander H (1993) Fluconazole-resistant Candida in AIDS patients. Oral Surg Oral Med Oral Pathol 76: 711Google Scholar
  14. Hirata D, Yano K, Miyahara K, Miyakawa T (1994) Saccharomyces cerevisiae YDR1 which encodes a member of the ATP-binding cassett (ABC) superfamily is required for multidrug resistance. Curr Genet 26: 285–294Google Scholar
  15. Hitchcock CA (1993) Resistance of Candida albicans to azole antifungal agents. Biochem Soc Trans 21: 1039Google Scholar
  16. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact cells treated with alkali cations. J Bacteriol 1153: 163–168Google Scholar
  17. Jia ZP, McCullough N, Wong L, Young PG (1993) The amiloride resistance gene, car 1 of Schizosaccharomyces pombe. Mol Gen Genet 241: 298–304Google Scholar
  18. Kuchler K, Sterne RE, Thorner J (1989) Saccharomyces cerevisiae STE6 gene product: a novel pathway for protein export in eukaryotic cells. EMBO J 13: 3973–3984Google Scholar
  19. Leppert G, McDevitt R, Falco SC, Van Dyk TK, Ficke MB, Golin J (1990) Cloning by gene amplification of two loci conferring multidrug resistance in Saccharomyces. Genetics 125: 13–20Google Scholar
  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  21. McGrath JP, Varshavsky A (1989) The yeast STE6 gene encodes a homologue of the mammalian multidrug-resistance P-glycoprotein. Nature 340: 400–404Google Scholar
  22. Odds FC (1988) Candida and candidosis. Bailliere Tindall, UKGoogle Scholar
  23. O'Hare K, Murphy C, Levis R, Rubin GM (1988) DNA sequence of the white lo us of Drosophila melanogaster. J Mol Biol 180: 437–455Google Scholar
  24. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448Google Scholar
  25. Prasad R (1987) Nutrient transport in Candida albicans, a pathogenic yeast. Yeast 3: 209–221Google Scholar
  26. Prasad R (1991) In: Prasad R (ed) Candida albicans: cellular and molecular biology. Springer Verlag, HeidelbergGoogle Scholar
  27. Purnelle B, Skala J, Goffeau A (1991) The product of the YCR105 gene located on the chromosome III from Saccharomyces cerevisiae presents homologies to ATP-dependent permeases. Yeast 7: 867–872Google Scholar
  28. Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Iannuzzi MC, Collins FS, Tsui LC (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073Google Scholar
  29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  30. Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A (1992) Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. Gene 116: 1105–108Google Scholar
  31. Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline N-oxide and other chemicals, encodes a 169-kDa protein homologous to ATP-dependent permeases. Mol Gen Genet 236: 214–218Google Scholar
  32. Soll DR (1990) In: Kirsch DR, Kelly R, Kurtz MB (eds) The genetics of Candida CRC Press, Boca Raton, Florida, pp 147–176Google Scholar
  33. Struhl K (1985) Naturally occurring poly (dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 82: 8419–8423Google Scholar
  34. Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 225: 563–573Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Rajendra Prasad
    • 1
  • Philippe De Wergifosse
    • 1
  • Andre Goffeau
    • 1
  • Elisabetta Balzi
    • 1
  1. 1.Unite de Biochimie PhysiologiqueUniversite Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations