Advertisement

Journal of Materials Science

, Volume 29, Issue 13, pp 3384–3392 | Cite as

Solid-state synthesis and characterization of the ternary phase Ti3SiC2

  • C. Racault
  • F. Langlais
  • R. Naslain
Article

Abstract

Ti3SiC2 is the only true ternary compound in the Ti-Si-C system. It seems to exhibit promising thermal and mechanical behaviour. With the exception of its layered crystal structure, most of its properties are unknown, owing to the great difficulty of synthesis. A new procedure of solid-state synthesis with several steps is proposed, which results in Ti3SiC2 with less than 5 at % of TiC. Ti3SiC2 is stable at least up to 1300 °C. Beyond this temperature, it can decompose with formation of non-stoichiometric titanium carbide and gaseous silicon, with kinetics highly dependent on the nature of the surroundings. As an example, graphite can initiate this process by reacting with silicon, while alumina does not favour the decomposition which remains very slow. The oxidation of Ti3SiC2 under flowing oxygen starts at 400 °C with formation of anatase-type TiO2 film, as studied by TGA, XRD, SEM and AES. Between 650 and 850 °C both rutile and anatase are formed, rapidly becoming protecting films and giving rise to slow formation of SiO2 and more TiO2. The oxidation kinetics is slower than for TiC, owing to a protecting effect of silica. By increasing the temperature, both oxidation processes (i.e. direct reaction and diffusion through oxide layers) are activated and an almost total oxidation is achieved between 1050 and 1250 °C resulting in titania (rutile) and silica (cristobalite).

Keywords

TiO2 Carbide Rutile TiO2 Film Ternary Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Jeitschko and H. Nowotny, Mh. für Chem. 98 (1967) 329.Google Scholar
  2. 2.
    P. Martineau, R. Pailler, M. Lahaye and R. Naslain, J. Mater, Sci. 19 (1984) 2749.Google Scholar
  3. 3.
    S. Morozumi, M. Endo, M. Kikuchi and K. Hamajima, ibid. 20 (1985) 3976.Google Scholar
  4. 4.
    T. Iseki, T. Yano and Y. S. Chung, J. Ceram. Soc. Jpn. Int. Ed. 97 (1989) 697.Google Scholar
  5. 5.
    M. Backhaus-Ricoult, Ber. Bunsenges. Phys. Chem. 93 (1989) 1277.Google Scholar
  6. 6.
    S. K. Choi, M. Chandrasekan, and M. J. Brabers, J. Mater. Sci. 25 (1990) 1957.Google Scholar
  7. 7.
    B. Gottselig, E. Gyarmati, A. Naoumidis and H. Nickel, J. Eur. Ceram. Soc. 6 (1990) 153.Google Scholar
  8. 8.
    T. Nishino, S. Urai and M. Naka, Eng. Fract. Mech. 40 (1991) 829.Google Scholar
  9. 9.
    W. J. J. Wakelkamp, F. J. J. van Loo and R. Metselaar, J. Eur. Ceram. Soc. 8 (1991) 135.Google Scholar
  10. 10.
    J. J. Nickl, K. K. Schweitzer and P. Luxenberg, J. Less-Common Met. 26 (1972) 335.Google Scholar
  11. 11.
    T. Goto and T. Hirai, Mater. Res. Bull. 22 (1987) 1195.Google Scholar
  12. 12.
    R. Pampuch, J. Lis, L. Stobierski and M. Tymkiewicz, J. Eur. Ceram. Soc. 5 (1989) 283.Google Scholar
  13. 13.
    S. Sambasivan, PhD Dissertation, Arizona State University, Tempe, AZ (1990).Google Scholar
  14. 14.
    C. E. Bruckl, “Ternary phase equilibria in transition boron-carbon-silicon systems”, Part II, Vol. VII, AFML-TR-65-2 (Metals and Ceramic Division, Air Force Laboratory, Wright Patterson Air Force Base, Ohio, 1966).Google Scholar
  15. 15.
    E. K. Storms, “The Refractory Carbides” (Academic, New York, 1967) p. 1.Google Scholar
  16. 16.
    S. Shimada and M. Kozeki, J. Mater. Sci. 27 (1992) 1869.Google Scholar
  17. 17.
    Y. A. Lavrenko, L. A. Glebov, A. P. Pomitkin, V. G. Chuprina and T. G. Protsenko, Oxid. Met. 9 (1975) 171.Google Scholar
  18. 18.
    T. Narushima, T. Goto and T. Hirai, J. Amer. Ceram. Soc. 72 (1989) 1386.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. Racault
    • 1
  • F. Langlais
    • 1
  • R. Naslain
    • 1
  1. 1.Laboratoire des Composites Thermostructuraux (UMR-47 CNRS-SEP-UB1)Domaine UniversitairePessacFrance

Personalised recommendations