Current Genetics

, Volume 24, Issue 5, pp 443–450 | Cite as

The ribosomal RNA repeats are non-identical and directly oriented in the chloroplast genome of the red alga Porphyra purpurea

  • Michael Reith
  • Janet Munholland
Original Articles

Abstract

A detailed restriction map of the chloroplast genome of the red alga Porphyra purpurea has been constructed. Southern hybridization experiments with cloned or gel-purified restriction fragments and PCR products indicate that the P. purpurea chloroplast genome is approximately 188 kb in size. This circular molecule contains two rRNA-encoding repeats (approximately 4.9 kb) that separate the genome into single-copy regions of 34 kb and 144 kb. Interestingly, these repeats are arranged in a direct orientation. In addition, DNA sequencing of the ends of both repeats revealed that the two rRNA repeats are not identical. No intramolecular recombination between the repeats can be detected. We discuss the possibility that the chloroplast genome of P. purpurea is organized like that of the ancestral chloroplast.

Key words

Chloroplast genome Direct repeats Restriction map Rhodophyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bancroft I, Wolk CP, Oren EV (1989) J Bacteriol 171:5940–5948Google Scholar
  2. Bird CJ, McLachlan JL (1992) Seaweed flora of the maritimes. 1. Rhodophyta—the red algae. Biopress, Bristol, EnglandGoogle Scholar
  3. Boyen C, Somerville CC, Le Gall Y, Kloareg B, Loiseaux-de Goër S (1991) J Phycol 27:11Google Scholar
  4. Bryant DA, Stirewalt VL (1990) FEBS Lett 259:273–280Google Scholar
  5. Carbon P, Ehresmann C, Ehresmann B, Ebel J-P (1979) Eur J Biochem 100:399–410Google Scholar
  6. Douglas SE (1992) Bio Systems 28:57–68Google Scholar
  7. Douglas SE, Turner S (1991) J Mol Evol 33:267–273Google Scholar
  8. Dryden SC, Kaplan S (1990) Nucleic Acids Res 18:7267–7277Google Scholar
  9. Gray MW (1989) Trends Genet 5:294–299Google Scholar
  10. Gray MW (1991) Origin and evolution of plastid genomes and genes. In: Bogorad L, Vasil IK (eds) Cell culture and somatic cell genetics of plants vol 7A. The molecular biology of plastids. Academic Press, San Diego, California, pp 303–330Google Scholar
  11. Gray MW, Doolittle WF (1982) Microbiol Rev 46:1–42Google Scholar
  12. Hallick RB, Buetow DE (1989) Chloroplast DNA. In: Buetow DE (ed) The biology of Euglena, vol IV. Academic Press, New York, pp 351–414Google Scholar
  13. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C, Meng B, Li Y, Kanno A, Nishizawa Y, Harai A, Shinozaki K, Suguira M (1989) Mol Gen Genet 217:185–194Google Scholar
  14. Kainz P, Schmiedlechner A, Strack HB (1992) Anal Biochem 202:46–49Google Scholar
  15. Karabin GD, Narita JO, Dodd JR, Hallick RB (1983) J Biol Chem 258:14790–14796Google Scholar
  16. Kessler U, Maid U, Zetsche K (1992) Plant Mol Biol 18:777–780Google Scholar
  17. Kourilsky P (1986) Trends Genet 2:60–63Google Scholar
  18. Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens SE, Jr, Porter RD (1985) J Bacteriol 164:659–664Google Scholar
  19. Li N, Cattolico RA (1987) Mol Gen Genet 209:343–351Google Scholar
  20. Lindstrom SC, Cole KM (1992) Can J Bot 70:1355–1363Google Scholar
  21. Loiseaux-de Goër SL, Markowicz Y, Dalmon J, Audren H (1988) Curr Genet 14:155–162Google Scholar
  22. Maid U, Zetsche K (1992) Plant Mol Biol 19:1001–1010Google Scholar
  23. Maid U, Steinmüller R, Zetsche K (1992) Curr Genet 21:521–525Google Scholar
  24. Neumann-Spallart C, Brandtner M, Kraus M, Jakowitsch J, Bayer MG, Maier TL, Schenk HEA, Löffelhardt W (1990) FEBS Lett 268:55–58Google Scholar
  25. Newton KJ (1988) Annu Rev Plant Physiol Plant Mol Biol 39:503–532Google Scholar
  26. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesano K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574Google Scholar
  27. Palmer JD (1985) Annu Rev Genet 19:325–354Google Scholar
  28. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogard L, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 7A. The molecular biology of plastids. Academic Press, San Diego, California, pp 5–53Google Scholar
  29. Reith M (1992) Plant Mol Biol 18:773–775Google Scholar
  30. Reith M (1993) Plant Mol Biol 21:185–189Google Scholar
  31. Reith M, Munholland J (1991) FEBS Lett 294:116–120Google Scholar
  32. Reith M, Munholland J (1993a) Curr Genet 23:59–65Google Scholar
  33. Reith M, Munholland J (1993b) Plant Cell 5:465–475Google Scholar
  34. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Suguira M (1986) EMBO J 5:2043–2049Google Scholar
  35. Shivji MS (1991) Curr Genet 19:49–54Google Scholar
  36. Shivji MS, Li N, Cattolico RA (1992) Mol Gen Genet 232:65–73Google Scholar
  37. Tomioka N, Shinozaki K, Suguira M (1981) Mol Gen Genet 184:359–363Google Scholar
  38. Valentin K, Zetsche K (1990) Mol Gen Genet 220:425–430Google Scholar
  39. Wolfe KH, Morden CW, Palmer JD (1992) Proc Natl Acad Sci USA 89:10648–10652Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michael Reith
    • 1
  • Janet Munholland
    • 1
  1. 1.Institute for Marine BiosciencesNational Research Council of CanadaHalifaxCanada

Personalised recommendations