Advertisement

Current Genetics

, Volume 24, Issue 5, pp 394–399 | Cite as

Promoter analysis of the bli-7/eas gene

  • R. Kaldenhoff
  • V. E. A. Russo
Original Articles

Abstract

Expression of the Neurospora crassa gene bli-7, (identical with eas, and ccg-2), is induced by blue light, as well as glucose- or nitrogen-starvation. A promoter analysis was performed by an assay that does not involve promoter-reporter constructs but rather the insertion of foreign DNA into the transcribed sequence. To detect regulatory elements a series of deletions in the upstream region was generated. The inducibility of the gene, in response to the three inducing conditions mentioned, is lost by eliminating the region between-1498 bp and-1017 bp upstream of the transcription start point. A segment with an apparently negative effect was found between-595 bp and-429 bp, as well as a stretch of DNA from-429 bp to-380 bp which may exert a positive influence after light induction.

Key words

Neurospora crassa bli-7, eas, ccg-2 Promoter analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell-Pedersen D, Dunlap JC, Loros JJ (1992) Genes Dev 10:2382–2394Google Scholar
  2. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR (1988) EMBO J 7:1929–1936Google Scholar
  3. Chambers JAA, Hinkelammert K, Russo VEA (1985) EMBO J 4:3649–3653Google Scholar
  4. DeBusk RM, Ogilvie S (1984) J Bacteriol 160:656–661Google Scholar
  5. Degli Innocenti F, Pohl U, Russo VEA (1983) J Photobiochem Photobiol 37:49Google Scholar
  6. Dunn-Coleman NS, Tomsett AB, Garrett RH (1981) Mol Genet 182:234–239Google Scholar
  7. Eberle J, Russo VEA (1992) DNA Sequence. J DNA Seq Mapping 3:131–141Google Scholar
  8. Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13Google Scholar
  9. Frederick GD and Kinsey JA (1990) Curr Genet 18:53–58Google Scholar
  10. Fu YH, Marzluf GA (1987) Mol Cell Biol 7:1691–1696Google Scholar
  11. Geisen R (1990) Fungal Genet Newslett 37:19–20Google Scholar
  12. Gilmartin PM, Sarokin L, Memelink J, Chua NH (1990) Plant Cell 2:369–378Google Scholar
  13. Gorman CM, Moffat LF, Howard BH (1982) Mol Cell Biol 2:1044–1051Google Scholar
  14. Harding RW, Melles S (1983) Plant Physiol 72:996–1000Google Scholar
  15. Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6:3901–3907Google Scholar
  16. Kuhlemeyer C, Fluhr R, Green P, Chua NH (1987) Genes Dev 1:247–255Google Scholar
  17. Lauter F-R, Russo VEA and Yanofsky C (1992) Genes Dev 6:2378–2381Google Scholar
  18. Lee DB, Free SJ (1984) Genetics 106:591–599Google Scholar
  19. Marzluf GA (1981) Microbiol Rev 45:437–461Google Scholar
  20. McNally MT, Free SJ (1988) Curr Genet 14:545–551Google Scholar
  21. Müller BT, Russo VEA (1989) Fungal Genet Newslett 36:58–69Google Scholar
  22. Nawrath C, Russo VEA (1990) J Photochem Photobiol 4:261–271Google Scholar
  23. Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461Google Scholar
  24. Pandit NN, Russo VEA (1991) Fungal Genet Newslett 38:93–95Google Scholar
  25. Potapova TV, Levina NN, Belozerskaya TA, Kritsky MS, Chailakhian LM (1984) Arch Microbiol 137:262–265Google Scholar
  26. Premarkumar R, Sorger GJ, Gooden D (1980) J Bacteriol 144:542–551Google Scholar
  27. Ricci M, Krappmann D, Russo VEA (1991) Fungal Genet Newsl 38:87–88Google Scholar
  28. Russo VEA (1988) J Photochem Photobiol 2:59–65Google Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Methods in molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Sargent ML, Briggs WR (1967) Plant Physiol 42:1504–1516Google Scholar
  31. Schrott EL (1980) Dose response and related aspects of carotenogenesis in Neurospora crassa. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 309–320Google Scholar
  32. Schuren FHJ, Wessels JGH (1990) Gene 90:199–205Google Scholar
  33. Selitrennikoff CP (1976) Neurospora Newslett 23:23Google Scholar
  34. Sigmund RD, McNally MT, Free SJ (1985) Biochem Genet 23:89–103Google Scholar
  35. Simpson J, Schell J, van Montagu M, Herella-Estrella L (1986) Nature 323:551–554Google Scholar
  36. Sokolovsky VY, Lauter F-R, Müller-Röber B, Ricci M, Schmidhauser TJ, Russo VEA (1992) J Gen Microbiol 138:2045–2049Google Scholar
  37. Sokolowski V, Kaldenhoff R, Ricci M, Russo VEA (1990) Fungal Genet Newslett 37:41–42Google Scholar
  38. Sommer T, Chambers JAA, Eberle J, Lauter FR, Russo VEA (1989) Nucleic Acids Res 17:5713–5723Google Scholar
  39. Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Genes Dev 5:1161–1171Google Scholar
  40. Struhl K (1987) Cell 49:295–297Google Scholar
  41. Vollmer SJ, Yanofsky C (1986) Proc Natl Acad Sci USA 83:4869–4873Google Scholar
  42. Wessels JGH, de Vries OMH, Asgeirsdottir SA, Schuren FHJ (1991) Plant Cell 3:793–799Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • R. Kaldenhoff
    • 1
  • V. E. A. Russo
    • 2
  1. 1.Institut für BotanikUniversität HannoverHannoverGermany
  2. 2.Max-Planck-Institut für molekulare GenetikBerlinGermany

Personalised recommendations