Wood Science and Technology

, Volume 17, Issue 1, pp 13–30 | Cite as

The periderms of three north American conifers

Part 2: Fine structure
  • S. E. Godkin
  • G. A. Grozdits
  • C. T. Keith


The fine structure of inactive eastern white spruce phellogen (Pg) and phelloderm is briefly described. Phellogen cells resemble dormant cambium but contain larger tannin vacuoles. Phelloderm cells contain even more tannin and have much thicker primary walls. Three types of phellem are described: crystalliferous phellem (CP), thin-walled phellem (TnP), and thick-walled phellem (TkP). All three occur in spruce, but only the latter two in balsam fir and eastern hemlock. The TnP cells have thin shared common walls overlain by suberinic and wax extractive layers. True pits are lacking, but plugged plasmodesmatal canals sealed over by the wax extractive layers cross the suberinic layers. Spruce CP and fir and hemlock TnP cells have adaxially-thickened suberinic and wax extractive layers when adjacent to TkP or inactive Pg. The suberin lamellae are much thickened in these suberinic layers, at least in spruce. Spruce CP has a thick wax extractive layer which also sheaths the crystals. The TkP cells of all three species have thick polylamellate abaxial cellin walls perforated by simple pits. The lamellae differ both in structure and composition. Polylamellate wall construction is discussed and a model proposed. The TkP cells have both suberinic and wax extractive layers in fir and hemlock, but only wax extractive layers in spruce. These cells are therefore true phellem cells, not phelloids.


Tannin Suberin Eastern Hemlock Eastern White Common Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Figure Key


compound middle lamella


crystalliferous phellem




crystal cell


demarcation zone


endoplasmic reticulum






narrow lamella










suberinic layer






thick-walled phellem


thin-walled phellem


wide lamella


wax extractive layers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, I. W.; Kerr, T. 1937: The structural variability of the secondary walls as revealed by “lignin” residues. J. Arnold Arboretum. 18 (4): 261–272Google Scholar
  2. Bramhall, A. E.; Kellogg, R. M. 1979: Anatomy of secondary phloem of western hemlock, Tsuga heterophylla (Raf.) Sarg. IAWA Bull. 1979/4: 79–85Google Scholar
  3. Chafe, S. C. 1970: The fine structure of the colenchyma cell wall. Planta 90: 12–21Google Scholar
  4. Chafe, S. C. 1974a: On the lamellate structure of the S2 layer. Protoplasma 79: 145–158Google Scholar
  5. Chafe, S. C. 1974b: Cell wall structure in the xylem parenchyma of Cryptomeria. Protoplasma 81: 63–76Google Scholar
  6. Chafe, S. C.; Chauret, G. 1974: Cell wall structure in the xylem parenchyma of trembling aspen. Protoplasma 80: 129–147Google Scholar
  7. Chafe, S. C.; Wardrop, A. B. 1972: Fine structural observations on the epidermis. I. The epidermal cell wall. Planta 107: 269–278Google Scholar
  8. Chang, Y.-P. 1954: Anatomy of common North American pulpwood barks. Tappi. Monograph Series No. 14Google Scholar
  9. Crist, J. B. 1972: Peridem morphology and thick-walled phellem ultrastructure of Longleaf Pine (Pinus palustris Mill.). Diss. Abstr. Internat. B. 33(3): 983–984Google Scholar
  10. Esau, K. 1967: Plant Anatomy. 2nd Ed. New York: John Wiley & SonsGoogle Scholar
  11. Frey-Wyssling, A. 1976: The Plant Cell Wall. Encyclopedia of plant anatomy (Handbuch der Pflanzenanatomie) III (4). Berlin, Stuttgart: Gebr. BorntraegerGoogle Scholar
  12. Frey-Wyssling, A.; Mühlethaler, K. 1965: Ultrastructural plant cytology. Amsterdam, London, New York: Elsevier Pub. Co.Google Scholar
  13. Godkin, S. E.; Grozdits, G. A.; Keith, C. T. 1977: A lipid-dense layer in the periderm of Picea glauca (Moench) Voss. Proc. Microsc. Soc. Can. IV: 60–61Google Scholar
  14. Godkin, S. E.; Grozdits, G. A.; Keith, C. T. 1978: The structure of the thick-walled phellem cells in eastern white spruce periderm. Proc. Microsc. Soc. Can. V: 62–63Google Scholar
  15. Grillos, S. J.; Smith, F. H. 1959: The secondary phloem of Douglas fir. For. Sci. 5: 377–388Google Scholar
  16. Grozdits, G. A. 1982: Microstructure of sequent periderms and the ultrastructure of periderm cell walls in Tsuga canadensis (L.) Carr. Wood Sci. 15: 110–118Google Scholar
  17. Grozdits, G. A.; Godkin, S. E.; Keith, C. T. 1982: The periderms of three conifiers. Park 1. Anatomy. Wood Sci. Technol. 16: 305–316Google Scholar
  18. Itoh, T. 1979: Studies on the structure and growth of primary walls of woody plants. Wood Res. Bull. Wood Res. Institute, Kyoto Univ. No. 65, pp. 54–110Google Scholar
  19. Karas, I.; McCully, M. E. 1973: Further studies of the histology of lateral root development in Zea mays. Protoplasma 77: 243–269Google Scholar
  20. Keith, C. T.; Godkin, S. E. 1976: Fixation of juvenile cambium from two coniferous species for ultrastructural study. Wood a. Fiber 8(3): 177–200Google Scholar
  21. Kerr, T. 1937: The structure of the growth rings in the secondary wall of the cotton hair. Protoplasma 27: 229–241Google Scholar
  22. Litvay, J. D.; Krahmer, R. L. 1976: The presence of callose in cork cells. Wood a. Fiber 8(3): 146–151Google Scholar
  23. Litvay, J. D.; Krahmer, R. L. 1977: Wall layering in Douglas fir cork cells. Wood Sci. 9(4): 167–173Google Scholar
  24. MacKenzie, K. A. D. 1979: The development of the endodermis and phi layer of apple roots. Protoplasma 100: 21–32Google Scholar
  25. Mader, H. 1954: Untersuchungen an Korkmembranen. Planta 43: 161–181Google Scholar
  26. Martin, R. E.; Crist, J. B. 1970: Elements of bark structure and terminology. Wood a. Fiber 2(3): 269–279Google Scholar
  27. Nanko, H.; Saiki, H.; Harada, H. 1978: Cell wall structure of the sclereids in the secondary phloem of Populus euramericana. Mokuzai Gakkaishi 24(6): 362–368Google Scholar
  28. O'Brien, T. P.; Carr, D. J. 1970: A suberized layer in the cell walls of the bundle sheath of grasses. Aust. J. Biol. Sci. 23: 275–287Google Scholar
  29. Oleson, P. 1978: Studies on the physiological sheaths in roots. I. Ultrastructure of the exoderms in Hoya carnosa L. Protoplasma 94: 325–340Google Scholar
  30. Parameswaran, N. 975: Zur Wandstruktur von Sklereiden in einigen Baumrinden. Protoplasma 85: 305–314Google Scholar
  31. Parameswaran, N.; Kruse, J.; Liese, W. 1975: Aufbau und Reinstruktur von Periderm und Lentizellen der Fichtenrinde. Z. Pflanzenphysiol. 77(3): 212–221Google Scholar
  32. Parameswaran, N.; Liese, W. 1976: On the fine structure of bamboo fibers. Wood Sci. Technol. 10: 231–246Google Scholar
  33. Parameswaran, N.; Liese, W. 1979: Crystal-containing walls of spicular cells in Welwitchia. IAWA Bull. 1979/4: 87–89Google Scholar
  34. Patel, R. N. 1975: Bark anatomy of radiata pine, Corsican pine, and Douglas fir grown in New Zealand. N. Z. J. Bot. 13(2): 149–167Google Scholar
  35. Robards, A. W.; Jackson, S. M.; Clarkson, D. T.; Sanderson, J. 1973: The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77: 291–311Google Scholar
  36. Roelofsen, P. A. 1959: The Plant Cell Wall. Handbuch der Pflanzenanatomie III (4). Berlin: Gebr. BorntraegerGoogle Scholar
  37. Sitte, P. 1955: Der Feinbau verkorkter Zellwände. Mikroskopie 10: 178–200Google Scholar
  38. Sitte, P. 1957: Der Feinbau der Kork-Zellwände. In: E. Treiber (Ed.): Die Chemie der Pflanzenzellwand. pp. 421–432. Berlin, Göttingen, Heidelberg: SpringerGoogle Scholar
  39. Sitte, P. 1959: Mischkörperdoppelbrechung der Kork-Zellwände. Naturwiss. 46(8): 260–261Google Scholar
  40. Sitte, P. 1962: Zum Feinbau der Suberinschichten in Flaschenkork. Protoplasma 54(9): 555–559Google Scholar
  41. von Wisselingh, C. 1925: Die Zellmembran. Handbuch der Pflanzenanatomie. III (2). Berlin: SpringerGoogle Scholar
  42. von Höhnel, F. 1877: Über den Kork und verkorkte Gewebe überhaupt. Sitz-Ber. Wiener Akad. Wiss. 76(1): 507–562Google Scholar
  43. Wattendorff, J. 1969: Feinbau und Entwicklung der verkorkten Calciumoxalat-Kristallzellen in der Rinde von Larix decidua Mill. Z. Pflanzenphysiol. 60: 307–347Google Scholar
  44. Wattendorff, J. 1974a: The formation of cork cells in the periderm of Acacia senegal Willd. and their ultrastructure during suberin deposition. Z. Pflanzenphysiol. 72: 119–134Google Scholar
  45. Wattendorff, J. 1974b: Ultrahistochemical reactions of the suberized cell walls in Acorus Acacia, and Larix. Z. Pflanzenphysiol. 73: 214–225Google Scholar
  46. Wattendorff, J.; Schmid, H. 1973: Prüfung auf perjodatreaktive Feinstrukturen in den suberinisierten Kristallzell-Wänden der Rinde von Larix und Picea. Z. Pflanzenphysiol. 68: 422–431Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • S. E. Godkin
    • 1
  • G. A. Grozdits
    • 2
  • C. T. Keith
    • 3
  1. 1.Department of AgricultureAgriculture Research StationSidney
  2. 2.Forest Products LaboratoryUniversity of CaliforniaRichmond
  3. 3.Forintek, Eastern Forest Products LaboratoryOttawa

Personalised recommendations