Current Genetics

, Volume 24, Issue 3, pp 205–211 | Cite as

Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa

  • P. J. Stone
  • A. J. Makoff
  • J. H. Parish
  • A. Radford
Original Articles

Abstract

A 1.0-kb DNA fragment, corresponding to an internal region of the Neurospora crassa glucoamylase gene, gla-1, was generated from genomic DNA by the polymerase chain reaction, using oligonucleotide primers which had been deduced from the known N-terminal amino-acid sequence or from consensus regions within the aligned amino-acid sequences of other fungal glucoamylases. The fragment was used to screen an N. crassa genomic DNA library. One clone contained the gene together with flanking regions and its sequence was determined. The gene was found to code for a preproprotein of 626 amino acids, 35 of which constitute a signal and propeptide region. The protein and the gene are compared with corresponding sequences in other fungi.

Key words

Glucoamylase Neurospora crassa Extracellular protein Signal sequence 

References

  1. Archer DB, Jeenes DJ, MacKenzie DA, Brightwell G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Bio/Technology 8:741–745Google Scholar
  2. Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yosizumi H (1986) Agric Biol Chem 50:957–964Google Scholar
  3. Azevedo MD, Felipe MSS, Astolfifilho S, Radford A (1990) J Gen Microbiol 136:2569–2576Google Scholar
  4. Bennett JW (1985) Molds, manufacturing and molecular genetics. In: Timberlake WE (ed) Molecular genetics of filamentous fungi. A. R. Liss, New York, pp 345–367Google Scholar
  5. Boel H, Hjort I, Svensson B, Noriss F, Norris KE, Fiil NP (1984) EMBO J 3:1097–1102Google Scholar
  6. Breathnach R, Chambon P (1981) Annu Rev Biochem 50:349–383Google Scholar
  7. Bu'Lock J, Kristiansen B (1987) Basic biotechnology. Academic Press, LondonGoogle Scholar
  8. Cavener DR, Ray SC (1991) Nucleic Acids Res 19:3185–3192Google Scholar
  9. Contreras R, Carrez D, Kinghorn JR, van den Hondel CAMJJ, Fiers W (1991) Bio/technology 9:378–381Google Scholar
  10. Davis RH, de Serres FJ (1970) Methods Enzymol 27A:79–143Google Scholar
  11. Dohmen JR, Strasser AW, Dahlems UM, Hollenberg CP (1990) Gene 95:111–121Google Scholar
  12. Germann UA, Mueller G, Hunziker PE, Lerch K (1988) J Biol Chem 263:885–896Google Scholar
  13. Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139Google Scholar
  14. Hata Y, Kitamoto K, Gomi K, Kumagi C, Tamura G, Hara S (1991) Agric Biol Chem 55:941–949Google Scholar
  15. Hayashida S, Kuroda K, Ohta K, Kuhara S, Fukuda K, Sakaki Y (1989) Agric Biol Chem 53:923–929Google Scholar
  16. Heijne G von (1986) Nucleic Acids Res 14:4683–4690Google Scholar
  17. Heijne G von (1990) J Membrane Biol 115:195–201Google Scholar
  18. Itoh T, Ohtsuki I, Yamashita I, Fukui S (1987) J Bacteriol 169:4171–4176Google Scholar
  19. Jespersen HM, Macgregor EA, Sierks MR, Svensson B (1991) Biochem J 280:51–55Google Scholar
  20. Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Cell 37:1075–1089Google Scholar
  21. Levitt M (1978) Biochemistry 17:4277–4285Google Scholar
  22. Kennedy JF, Cabalda VM, White CA (1988) Trends Biotechnol 6:184–189Google Scholar
  23. Koh-Luar SI, Parish JH, Bleasby AJ, Pappin DJC, Ainley K, Johnsen F-E, McPherson MJ, Radford A (1989) Enzyme Microbiol Technol 11:692–695Google Scholar
  24. Kozak M (1984) Nucleic Acids Res 12:857–872Google Scholar
  25. Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innis MA (1984) Mol Cell Biol 4:2306–2315Google Scholar
  26. Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461Google Scholar
  27. Pardo JM, Ianez E, Zalacain M, Claros MG, Jimenez A (1988) FEBS Lett 239:179–184Google Scholar
  28. Perkins DD (1992) Genetics 130:687–700Google Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Shibuya I, Gomi K, Iimura Y, Takahashi K, Tamura G, Hara S (1990) Agric Biol Chem 54:1905–1914Google Scholar
  31. Sierks MR, Ford C, Reilly PJ, Svensson B (1989) Prot Eng 2:621–625Google Scholar
  32. Stark MJR, Boyd A (1986) EMBO J 5:1995–2002Google Scholar
  33. Svensson B, Jespersen H, Sierks MR, Macgregor EA (1989) Biochem J 264:309–311Google Scholar
  34. Svensson B, Clarke AJ, Svendsen I, Moller H (1990) Eur J Biochem 188:29–38Google Scholar
  35. Van den Hondel CAMJJ, Punt PJ, Van Gorcom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennett JW, Lasure LL (eds) More gene manipulation in fungi. Academic Press, San Diego, pp 396–428Google Scholar
  36. Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Bio/Technology 8:435–438Google Scholar
  37. Ward PP, Lo J-Y, Duke M, May GS, Headon DR, Connelly OM (1992) Bio/Technology 10:784–789Google Scholar
  38. Winther JR, Sorensen P (1991) Proc Natl Acad Sci USA 88:9330–9334Google Scholar
  39. Yamashita I, Suzuki K, Fukui s (1985) J Bacteriol 161:567–573Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • P. J. Stone
    • 1
  • A. J. Makoff
    • 2
  • J. H. Parish
    • 1
  • A. Radford
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyThe University of LeedsLeedsUK
  2. 2.Department of Cell BiologyThe Wellcome Research LaboratoriesBeckenhamUK
  3. 3.Department of GeneticsThe University of LeedsLeedsUK

Personalised recommendations