Advertisement

Current Genetics

, Volume 24, Issue 6, pp 539–543 | Cite as

Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs

  • Michael S. Meusel
  • Robin F. A. Moritz
Original Articles

Abstract

Strict maternal inheritance of mitochondrial (mt) DNA is believed to be the rule in most eukaryotic organisms because of exclusion of paternal mitochondria from the egg cytoplasm during fertilization. In honeybees, polyspermic fertilization occurs, and many spermatozoa, including their mitochondria-rich flagellum, can completely penetrate the egg, thus allowing for a possibly high paternal leakage. In order to identify paternal mtDNA in honeybee eggs, restriction fragment length polymorphisms (RFLP) of different subspecies were used. Total DNA extracts of different developmental stages of an Apis mellifera carnica x Apis mellifera capensis hybrid brood were tested with a radioactively-labelled diagnostic mtDNA probe. Densitograms of autoradiographs indicated that the male contribution represents up to 27% of the total mitochondrial DNA in the fertilized eggs 12 h after oviposition. In subsequent developmental stages the portion of paternal mtDNA slowly decreased until hatching of the larvae when only traces were found. Although rapid disintegration of paternal mtDNA does not occur, the initially high paternal mitochondrial contribution is not maintained in the adult animal.

Key words

Mitochondrial DNA Apis mellifera Fertilization Paternal inheritance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam A (1912) Zool Jb Anat Abt 35:1–74Google Scholar
  2. Anderson WA (1968) J Ultrastructure Res 24:311–321Google Scholar
  3. Balinsky BI (1975) Annu Rev Genet 12:471–512Google Scholar
  4. Birky CW Jr, Acton AR, Dietrich R, Carver M (1982) Mitochondrial transmission genetics: replication, recombination, and segregation of mitochondrial DNA and its inheritance in crosses. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 333–348Google Scholar
  5. Blochmann F (1889) Morphol Jb 15:85–96Google Scholar
  6. Bretschneider LH (1948) L Proc Kon Ned Acad Wetensch 51:616–626Google Scholar
  7. Brown JR, Beckenbach AT, Smith MJ (1992) Genetics 132:221–228Google Scholar
  8. Chapman RW, Stephens JC, Lansman RA, Avise JC (1982) Genet Res 40:41–57Google Scholar
  9. Cornuet J-M, Garnery L, Solignac M (1991) Genetics 128:393–403Google Scholar
  10. Counce SJ (1973) The causal analysis of insect embryogenesis. In: Counce SJ, Waddington CH (eds) Developmental systems: Insects, vol. 2. Academic Press, New York, pp 1–156Google Scholar
  11. Crozier RH, Crozier YC, Mackinlay AG (1989) Mol Biol Evol 6(4):399–411Google Scholar
  12. Davey KG (1965) Reproduction in the insects. Oliver and Boyd, Edinburgh, LondonGoogle Scholar
  13. Dawid IB (1966) Proc Natl Acad Sci USA 56:269–276Google Scholar
  14. Dawid IB, Blackler AW (1972) Dev Biol 29:152–161Google Scholar
  15. Drescher W, Rothenbuhler WC (1963) J Hered 54:194–201Google Scholar
  16. Friedländer M (1980) Int J Insect Morph Embryol 9:53–57Google Scholar
  17. Gyllenstein U, Wharton D, Wilson AC (1985) J Hered 76:321–324Google Scholar
  18. Gyllenstein U, Wharton D, Josefsson A, Wilson AC (1991) Nature 352:255–257Google Scholar
  19. Hall HG, Muralidharan K (1989) Nature 339:211–213Google Scholar
  20. Hamilton HH (1952) Lillie's Development of the chick. Holt, New YorkGoogle Scholar
  21. Hennig W (1988) Spermatogenesis in Drosophila. In: Malacinski GM (ed) Developmental genetics of higher organisms. Macmillan, New York, pp 239–274Google Scholar
  22. Hilderth PE, Lucchesi JC (1963) Fertilization in Drosophila. Dev Biol 6:262–278Google Scholar
  23. Hoeh WR, Blakley KH, Brown WM (1991) Science 251:1488–1490Google Scholar
  24. Kawano S, Takano H, Mori K, Kuroiwa T (1991) Protoplasma 160:167–169Google Scholar
  25. Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Genetics 126:657–663Google Scholar
  26. Kondo R, Matsuura ET, Chigusa SI (1992) Genet Res 59:81–84Google Scholar
  27. Laidlaw HH, Tucker KW (1964) Genetics 50:1439–1442Google Scholar
  28. Lansman RA, Avise JC, Huettel MD (1983) Proc Natl Acad Sci USA 80:1969–1971Google Scholar
  29. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. Meland S, Johansen S, Johansen T, Haugli K, Haugli F (1991) Curr Genet 19:55–60Google Scholar
  31. Meusel MS, Moritz RFA (1992) Apidologie 23:147–150Google Scholar
  32. Moritz RFA, Meusel MS (1989) Proc 32nd Int Cong Apimondia, Rio de JaneiroGoogle Scholar
  33. Moritz RFA, Hawkins CF, Crozier RH, Mackinlay AG (1985) Experientia 42:322–324Google Scholar
  34. Nachtsheim H (1914) Arch Zellforsch 2:169–241Google Scholar
  35. Neale DB, Marshall KA, Sederoff RR (1989) Proc Natl Acad Sci USA 86:9347–9349Google Scholar
  36. Petrunkewitsch A (1901) Zool Jb 14:573–608Google Scholar
  37. Piko L, Matsumoto L (1976) Dev Biol 49:1–10Google Scholar
  38. Richards AG, Miller A (1937) J New York Ent Soc 45:1–60Google Scholar
  39. Rothenbuhler WC (1957) J Hered 48:160–168Google Scholar
  40. Rothenbuhler WC, Gowen JW, Park OW, (1952) Science 115:637–638Google Scholar
  41. Rothschild L (1956) Fertilization. Methuen and Co. Ltd, LondonGoogle Scholar
  42. Satta Y, Toyohara N, Ohtaka C, Tatsuno Y, Watanabe TK, Matsuura ET, Chigusa SI, Takahata N (1988) Genet Res 52:1–6Google Scholar
  43. Sheppard WS, Rinderer TE, Mazzoli JA, Stelzer JA, Shimanuki H (1991) Nature 349:782–784Google Scholar
  44. Smith DR (1988) Mitochondrial DNA polymorphisms in five Old World subspecies of honey bees and in New World hybrids. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, Chichester, pp 303–312Google Scholar
  45. Smith DR, Brown WM (1988) Experientia 44:257–260Google Scholar
  46. Smith DR, Taylor OR, Brown WM (1989) Nature 339:213–215Google Scholar
  47. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  48. Stordeur E de, Solignac M, Monnerot M, Mounolou JC (1990) Mol Gen Genet 220:127–132Google Scholar
  49. Takahata N, Maruyama T (1981) Genet Res 37:291–302Google Scholar
  50. Takahata N, Palumbi SR (1985) Genetics 109:441–457Google Scholar
  51. Vlasak I, Burgschwaiger S, Kreil G (1987) Nucleic Acids Res 15:2388Google Scholar
  52. Wilson AC, Cann RL, Carr SM, George M, Gyllenstein UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Biol J Linn Soc 26:375–400Google Scholar
  53. Zouros E, Freeman KR, Oberhauser Ball A, Pogson GH (1992) Nature 359:412–414.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Michael S. Meusel
    • 1
  • Robin F. A. Moritz
    • 2
  1. 1.Department of Zoology and Entomology, Molecular Biology LaboratoryUniversity of NatalRepublic of South Africa
  2. 2.Institut für Biologie/GenetikTU BerlinBerlinGermany

Personalised recommendations