Current Genetics

, Volume 21, Issue 4–5, pp 319–324 | Cite as

Isolation and characterization of additional genes influencing resistance to various mutagens in the yeast Saccharomyces cerevisiae

  • Eckard Haase
  • Jörg Servos
  • Martin Brendel
Original Articles

Summary

Screening of a multi-copy vector-based yeast genomic library in haploid cells of wild-type Saccharomyces cerevisiae yielded transformants hyper-resistant to various chemical mutagens. Genetical analysis of the yeast insert DNAs revealed three genes SNG1, SNQ2, and SNQ3 that confer the phenotype hyper-resistance to MNNG, to 4-NQO and triaziquone, and to mutagens 4-NQO, MNNG, and triaziquone, respectively. Integration of the gene disruption-constructs into the haploid yeast genome yielded viable null-mutants with a mutagen-sensitive phenotype. Thus, copy number of these non-essential yeast genes determines the relative resistance to certain chemical mutagens, with zero copies yielding a phenotype of mutagen sensitivity and multiple copies one of mutagen hyper-resistance, respectively.

Key words

Multi-copy plasmid Hyper-resistance 4-NQO MNNG Triaziquone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balzi E, Chen W, Ulaszewski S, Capieaux E, Goffeau A (1987) J Biol Chem 262:16871–16879Google Scholar
  2. BirnboimHG, Doly J (1979) Nucleic Acids Res 7: 1513–1523Google Scholar
  3. Botstein D, Falco SC, Steward S, Brennan M, Scherer S, Stinchcomb DT, Struhl K, Davis RW (1979) Gene 8: 17–24Google Scholar
  4. Brendel M, Haynes RH (1973) Mol Gen Genet 125: 197–216Google Scholar
  5. Brendel M, Ruhland AR (1984) Mutat Res 133: 51–85Google Scholar
  6. Broach JR, Strathern JN, Hicks JB (1979) Gene 8: 121–133Google Scholar
  7. Callen DF, Philpot RM (1977) Mutat Res 45: 309–324Google Scholar
  8. Carlson M, Botstein D (1982) Cell 28: 145–154Google Scholar
  9. Cifton D, Weinstock SB, Fraenkel DG (1978) Genetics 88: 1–11Google Scholar
  10. Curt GA, Clendennin NJ, Chabner BA (1984) Cancer Treat Rep 68: 87–98Google Scholar
  11. Dagert M, Ehrlich SD (1979) Gene 6: 23–28Google Scholar
  12. Endicott JA, Ling V (1989) Annu Rev Biochem 58: 137–171Google Scholar
  13. Fleer R, Brendel M (1979) Mol Gen Genet 176: 41–52Google Scholar
  14. Fleer R, Ruhland AR, Brendel M (1982) Chem-Biol Interac 42: 67–78Google Scholar
  15. Friedberg EC (1988) Microbiol Rev 52: 70–102Google Scholar
  16. Game JC, Cox BS (1972) Mutat Res 16: 353–362Google Scholar
  17. Gömpel-Klein P, Brendel M (1990) Curr Genet 18: 93–96Google Scholar
  18. Gömpel-Klein P, Mack M, Brendel M (1989) Curr Genet 16: 65–74Google Scholar
  19. Goldenberg GJ, Begleiter A (1984) In: Fox BW, Fox M (eds) Handbook of experimental pharmacology. Springer Verlag New York, pp 241–298Google Scholar
  20. Gonzalez FJ, Jaiswal AK, Nebert DW (1986) Cold Spring Harb Symp Quant Biol 51: 879–890Google Scholar
  21. Haase E, Brendel M (1990) Curr Genet 18: 187–192Google Scholar
  22. Hertle K, Haase E, Brendel M (1991) Curr Genet 19: 429–433Google Scholar
  23. Holm C, Meeks-Wagner DW, Fangman WL, Botstein D (1986) Gene 42: 169–173Google Scholar
  24. Huisman O, Raymond W, Fröhlich KU, Errada P, Kleckner N, Botstein D, Hoyt MA (1987) Genetics 116: 191–199Google Scholar
  25. Hussain M, Lenard J (1991) Gene 101: 149–152Google Scholar
  26. Ito H, Fukuda J, Muruta K, Kimura A (1983) J Bacteriol 153: 163–168Google Scholar
  27. Kanazawa S, Driscoll M, Struhl K (1988) Mol Cell Biol 8: 664–673Google Scholar
  28. Kartner N, Riordan JR, Ling V (1983) Science 221: 1285–1288Google Scholar
  29. Kistler M, Summer KH, Eckardt F (1986) Mutat Res 173: 117–120Google Scholar
  30. Lee W, Haslinger A, Karin M, Tjian R (1987) Nature 325: 368–372Google Scholar
  31. Li Z, Haase E, Brendel M (1991) Curr Genet 19: 423–427Google Scholar
  32. Mack M, Gömpel-Klein P, Haase E, Hietkamp J, Ruhland AR, Brendel M (1988) Mol Gen Genet 211: 260–265Google Scholar
  33. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  34. Meister A, Anderson ME (1983) Annu Rev Biochem 52: 711–760Google Scholar
  35. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  36. Moye-Rowley WS, Harshman KD, Parker CS (1989) Genes Dev 3: 283–292Google Scholar
  37. Nikawa J, Hosaka K, Tsukagoshi Y, Yamashita S (1990) J Biol Chem 256: 15996–16003Google Scholar
  38. Pickett CB, Lu AHY (1989) Annu Rev Biochem 58: 743–764Google Scholar
  39. Rodriguez RL, Tait RC (1983) In: Recombinant DNA techniques (an introduction). Addison-Wesley, London, pp 186–187Google Scholar
  40. Rothstein RJ (1983) Methods Enzymol 101: 202–209Google Scholar
  41. Ruhland AR, Brendel M (1979) Genetics 92: 83–97Google Scholar
  42. Ruhland AR, Haase E, Siede W, Brendel M (1981) Mol Gen Genet 181: 346–351Google Scholar
  43. Ruhland AR, Brendel M, Haynes RH (1986) Curr Genet 11: 211–215Google Scholar
  44. Sedgwick B, Robins P (1980) Mol Gen Genet 180: 85–90Google Scholar
  45. Schimke RT (1984) Cancer Res 44: 1735–1742Google Scholar
  46. Schnell N, Entian K-D (1991) Eur J Biochem 200: 487–493Google Scholar
  47. Schnell N, Krems B, Entian K-D (1992) Curr Genet (in press)Google Scholar
  48. Shen DW, Fojo A, Roninson IB, Chin JE, Soffir R, Pastan I, Gottesman MM (1986) Mol Cell Biol 6: 4039–4044Google Scholar
  49. Sugimura T, Okabe K, Endo H (1965) Gann 58: 489–501Google Scholar
  50. Tada M, Tada M (1975) Nature 255: 510–512Google Scholar
  51. Way JC, Davis MA, Morisato D, Roberts DE, Kleckner N (1984) Gene 32: 369–379Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Eckard Haase
    • 1
  • Jörg Servos
    • 1
  • Martin Brendel
    • 1
  1. 1.Institut für Mikrobiologie der J.W. Goethe-UniversitätFrankfurt/MainFederal Republic of Germany

Personalised recommendations