Current Genetics

, Volume 21, Issue 4–5, pp 269–273 | Cite as

The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, ac-jun homologue, is involved in oxygen metabolism

  • Norbert Schnell
  • Bernhard Krems
  • Karl-Dieter Entian
Original Articles


The PAR1/SNQ3 gene of S. cerevisiae, which increases resistance to iron chelators in multi-copy transformants, is identical to the YAP1 gene, a yeast activator protein isolated as a functional homologue of the human c-jun oncogene by binding specifically to the AP-1 consensus box. The observed H2O2-sensitivity of par1 mutants has been attributed to an increased sensitivity to reduced oxygen intermediates. Accordingly, par1 mutants did not survive an elevated oxygen pressure and were very sensitive to menadione and methylviologene, two chemicals enhancing the deleterious effects of oxygen. The specific activities of enzymes involved in oxygen detoxification, such as superoxide dismutase, glucose 6-phosphate dehydrogenase and glutathione reductase, were decreased in par1 mutants and increased after PAR1 over-expression. As in the case of oxygen detoxification enzymes, the cellular levels of glutathione were similarly affected. These observations indicate that PAR1/YAP1/SNQ3 is involved in the gene regulation of certain oxygen detoxification enzymes. The finding that H2O2 promotes DNA-binding of human c-jun is consistent with a similar function for PAR1/YAP1/SNQ3 and c-jun in cellular metabolism.

Key words

Saccharomyces cerevisiae Transcriptional activator Oxidative stress Glutathione 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel P, Imagewa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Cell 49:729–739Google Scholar
  2. Angel P, Allegretto EA, Okino ST, Hattori K, Boyle WJ, Hunter T, Karin M (1988) Nature 332:166–171Google Scholar
  3. Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, Ruis H (1991) EMBO J 10:585–592Google Scholar
  4. Bergmayer HU (1974) Methoden der enzymatischen Analyse 3rd edn. Verlag Chemie, Weinheim, pp. 459–461, 494–495, 674–675Google Scholar
  5. Bermingham-McDonogh O, Gralla EB, Selverstone Valentine J (1988) Proc Natl Acad Sci USA 85:4789–4793Google Scholar
  6. Bilinski T, Krawiec Z, Litwinska J, Blaszczynski M (1988) Oxy-radicals in molecular biology and pathology. In: Cerutti PA, Fridsrich J, McCord JM (eds.) UCCLA Symposium on Molecular and Cellular Biology. Atlan R Liss, New York, pp 109–125Google Scholar
  7. Chan E, Weiss B (1987) Proc Natl Acad Sci USA 84:3189–3193Google Scholar
  8. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) Cell 54:541–552Google Scholar
  9. Ciriacy M (1977) Mol Gen Genet 176:427–431Google Scholar
  10. Devary Y, Gottlieb RA, Lau LF, Karin M (1991) Molec Cell Biol 11:2804–2811Google Scholar
  11. Fridovich I (1989) J Biol Chem 264:7761–7764Google Scholar
  12. Garcia J, Harrich D, Pearson L, Nutsuyasu R, Gaynor R (1988) EMBO J 7:3143–3147Google Scholar
  13. Greenberg JT, Demple B (1989) J Bacteriol 171:3933–3939Google Scholar
  14. Gregory EM, Fridovich I (1973) J Bacteriol 114:543–548Google Scholar
  15. Halliwell B, Gutteridge JMC (1986) Trends Biochem Sci 11:372–375Google Scholar
  16. Halliwell B, Gutteridge MC (1990) Methods Enzymol 186:1–89Google Scholar
  17. Hansen H, Roggenkamp R (1989) Eur J Biochem 184:173–179Google Scholar
  18. Harshman KD, Moye-Rowley WS, Parker CS (1988) Cell 53:321–330Google Scholar
  19. Hassan HM, Fridovich I (1979) J Biol Chem 254:10864–10852Google Scholar
  20. Hertle K, Haase E, Brendel M (1991) Curr Genet 19:429–433Google Scholar
  21. Hope I, Struhl K (1985) Cell 43:177–188Google Scholar
  22. Imlay JA, Linn S (1988) Science 240:1302–1309Google Scholar
  23. Landschulz WH, Johnson PF, McKnight SL (1988) Science 240:1759–1764Google Scholar
  24. Lee W, Haslinger A, Karin M, Tjian R (1987a) Nature 325:368–372Google Scholar
  25. Lee W, Mitchell P, Tjian R (1987b) Cell 49:741–752Google Scholar
  26. Levin JD, Johnson AW, Demple B (1988) J Biol Chem 263:8066–8071Google Scholar
  27. Linda (1989) Bacteriol 171:868–873Google Scholar
  28. Maitra PK, Lobo Z (1971) J Biol Chem 246:475–488Google Scholar
  29. Miskin R, Ben-Ishay R (1981) Proc Natl Acad Sci USA 78:6236–6240Google Scholar
  30. Moody C, Hassan HM (1982) Proc Natl Acad Sci USA 79:2855–2859Google Scholar
  31. Moye-Rowley WS, Harshman KD, Parker CS (1989) Genes Develop 3:283–292Google Scholar
  32. Niederhoffer EC, Naranjo CM, Bradley KL, Fee JA (1990) J Bacteriol 172:1930–1938Google Scholar
  33. Nogae I, Johnston M (1990) Gene 96:161–169Google Scholar
  34. Oyanagui Y (1984) Anal Biochem 142:290–296Google Scholar
  35. Ryder K, Lau LF, Nathans D (1988) Proc Natl Acad Sci USA 85:1487–1491Google Scholar
  36. Schnell N, Entian K-D (1991) Eur J Biochem 200:487–493Google Scholar
  37. Schreck R, Rieber P, Baeuerle PA (1991) EMBO J 10:2247–2258Google Scholar
  38. Storz G, Tartaglia LA, Farr SB, Ames BN (1990) Trends Genet 6:363–368Google Scholar
  39. Tardat B, Touati D (1991) Mol Microbiol 5:455–465Google Scholar
  40. Tietze F (1969) Anal Biochem 27:502–506Google Scholar
  41. Tsaneva IR, Weiss B (1990) J Bacteriol 172:4197–4205Google Scholar
  42. Turrens JF, Boveris A (1980) Biochem J 191:421–427Google Scholar
  43. Weisshaar B, Armstrong GA, Block A, da Costa e Silva O, Hahlbrock K (1991) EMBO J 10:1777–1786Google Scholar
  44. Westerbeek-Marres CAM, Moore MM, Autor AP (1988) Eur J Biochem 174:611–620Google Scholar
  45. Zamenhoff S (1957) Methods Enzymol 3:696–704Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Norbert Schnell
    • 1
  • Bernhard Krems
    • 1
  • Karl-Dieter Entian
    • 1
  1. 1.Institut für MikrobiologieJ. W. Goethe-Universität FrankfurtFrankfurt/MainFederal Republic of Germany

Personalised recommendations