Current Genetics

, Volume 21, Issue 6, pp 437–442

Multiple copies of SUC4 regulatory regions may cause partial de-repression of invertase synthesis in Saccharomyces cerevisiae

  • Daniel Gozalbo
Original Articles


Transformation to generate multiple copies of regulatory DNA sequences has been used to study the interactions between regulatory proteins and their target sequences, since a high copy number of these sequences may titrate trans-acting regulatory proteins. We have analyzed the synthesis of invertase in yeast strains carrying different SUC genes transformed with the multiple-copy plasmid pSH143, a derivative of pJDB207 containing the promoter and upstream regulatory sequences of SUC4. The results obtained seem to be strain dependent. Under repressing conditions a high copy number of SUC4 promoter regions may cause increased expression of the invertase genes resulting in the synthesis of external glycosylated protein. A similar result was obtained under de-repressing conditions since transformants from some strains showed higher levels of activity. These results suggest that transcriptional regulatory (negative) factors may become limiting when the copy number of their target DNA sequences is increased. This effect may depend on the amount of active repressor molecules as well as on their affinity for SUC4 upstream sequences. This is discussed on the basis of the nucleotide sequences of SUC promoters.

Key words

SUC promoters Yeast invertase Glucose repression Multicopy plasmid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker SM, Okkema PG, Jaehning JA (1984) Mol Cell Biol 4:2062–2071Google Scholar
  2. Baker SM, Johnston SA, Hopper JE, Jaehning JA (1987) Mol Gen Genet 208:127–134Google Scholar
  3. Beggs JD (1978) Nature 275:104–108Google Scholar
  4. Beggs JD (1981) In: Williamson R (ed) Genetic engineering vol 2. Academic Press, New York, pp 175–203Google Scholar
  5. Carlson M (1987) J Bacteriol 169:4873–4877Google Scholar
  6. Carlson M, Botstein D (1982) Cell 28:145–154Google Scholar
  7. Carlson M, Osmond BC, Botstein D (1981) Genetics 98:41–54Google Scholar
  8. Carlson M, Taussig R, Kustu S, Botstein D (1983) Mol Cell Biol 3:439–447Google Scholar
  9. del Castillo L, Zimmermann FK (1987) J Gen Microbiol 133:1583–1588Google Scholar
  10. Entian KD (1986) Microbiol Sci 3:366–371Google Scholar
  11. Entian KD, Zimmermann FK, Scheel I (1977) Mol Gen Genet 156:99–105Google Scholar
  12. Flick JS, Johnston M (1991) Mol Cell Biol 11:5101–5112Google Scholar
  13. Futcher AB, Cox BS (1984) J Bacteriol 157:283–290Google Scholar
  14. Goldstein A, Lampen JO (1975) Methods Enzymol 42:504–511Google Scholar
  15. Gozalbo D, Hohmann S (1989) Mutat Res 215:89–94Google Scholar
  16. Grossmann MK, Zimmermann FK (1979) Mol Gen Genet 175:223–229Google Scholar
  17. Hohmann S (1987) Ph D thesis, Technische Hochschule Darmstadt, GermanyGoogle Scholar
  18. Hohmann S, Gozalbo D (1988) Mol Gen Genet 211:446–454Google Scholar
  19. Hohmann S, gozalbo D (1989) Mutat Res 215:79–87Google Scholar
  20. Hohmann S, Zimmermann FK (1986) Curr Genet 11:217–225Google Scholar
  21. Latchman DS (1990) Biochem J 270:281–289Google Scholar
  22. Mercado JJ, Vincent O, Gancedo JM (1991) FEBS Lett 291:97–100Google Scholar
  23. Nehlin JO, Ronne H (1990) EMBO J 9:2891–2898Google Scholar
  24. Nehlin JO, Carlberg M, Ronne H (1991) EMBO J 10:3373–3377Google Scholar
  25. Parets-Soler A (1989) Curr Genet 15:299–301Google Scholar
  26. Perez-Ortin JE, Estruch F, Matallana E, Franco L (1987) Nucleic Acids Res 15:6937–6956Google Scholar
  27. Perlman D, Halvorson HO, Cannon LE (1982) Proc Natl Acad Sci USA 70:781–785Google Scholar
  28. Rodriguez L, Lampen JO, MacKay VL (1981) Mol Cell Biol 1:469–474Google Scholar
  29. Sarokin L, Carlson M (1984) Mol Cell Biol 4:2750–2757Google Scholar
  30. Sarokin L, Carlson M (1985) Mol Cell Biol 5:2521–2526Google Scholar
  31. Sarokin L, Carlson M (1986) Mol Cell Biol 6:2314–2333Google Scholar
  32. Straka C, Hörz W (1991) EMBO J 10:361–368Google Scholar
  33. Taussig R, Carlson M (1983) Nucleic Acid Res 11:1943–1954Google Scholar
  34. Thoma F (1991) Trends Genet 7:175–177Google Scholar
  35. Zamenhoff S (1957) Methods Enzymol 3:696–704Google Scholar
  36. Zimmermann FK (1975) Mutat Res 31:71–86Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Daniel Gozalbo
    • 1
  1. 1.Secció de Microbiología, Facultat de FarmàciaUniversitat de ValènciaValènciaSpain

Personalised recommendations