Current Genetics

, Volume 25, Issue 4, pp 336–341 | Cite as

A mitochondrial group-I intron in fission yeast encodes a maturase and is mobile in crosses

  • Bernd Schäfer
  • Birgit Wilde
  • Domenica Rita Massardo
  • Filomena Manna
  • Luigi Del Giudice
  • Klaus Wolf
Original Articles

Abstract

The open reading frame in the first intron of the mitochondrial gene encoding subunit I of cytochrome c oxidase encodes a maturase and stimulates homologous recombination in Escherichia coli. In this paper, we demonstrate that this intron is mobile in crosses, indicating that it also encodes an endonuclease. This is the first report on an intron which possesses mobility and acts as a maturase.

Key words

Schizosaccharomyces pombe Group-I intron Endonuclease Maturase Intron homing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Lambowitz AM (1987) A protein required for splicing group-I introns in Neurospora is mitochondrial tyrosyl tRNA synthetase or a derivative thereof. Cell 50:331–345Google Scholar
  2. Banroques J, Delahodde A, Jacq C (1986) A mitochondrial RNA maturase gene controls mitochondrial mRNA splicing. Cell 46:837–844Google Scholar
  3. Banroques J, Perea J, Jacq C (1987) Efficient splicing of two yeast mitochondrial introns controlled by a nuclear-encoded maturase. EMBO J 6:1085–1091Google Scholar
  4. Belfort M (1991) Self-splicing introns in prokaryotes: migrant fossils? Cell 64:9–11Google Scholar
  5. Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315:283–284Google Scholar
  6. Cech T (1990) Self-splicing of group-I introns. Annu Rev Biochem 59:543–568Google Scholar
  7. Cherniack AD, Garriga G, Kittle RA, Akins RA, Lambowitz AM (1990) Function of Neurospora mitochondrial tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. Cell 62:745–755Google Scholar
  8. Colleaux L, d'Auriol L, Galibert F, Dujon B (1988) Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA 85:6022–6026Google Scholar
  9. Delahodde A, Goguel V, Becam AM, Creusot F, Perea J, Banroques J, Jacq C (1989) Site-specific DNA endonuclease and RNA maturase activites of two homologous intron-encoded proteins from yeast mitochondria. Cell 56:431–441Google Scholar
  10. De La Salle H, Jacq C, Slonimski PP (1982) Critical sequences within mitochondrial introns: pleiotropic mRNA maturase and cis-dominant signals of box intron controlling reductase and oxidase. Cell 28:725–732Google Scholar
  11. Dujardin G, Jacq C, Slonimski PP (1982) Single-base substitution in an intron of oxidase gene compensates splicing defects of the cytochrome gene. Nature 298:628–632Google Scholar
  12. Dujon B (1989) Group-I introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82:91–114Google Scholar
  13. Goguel V, Bailone R, Devoret R, Jacq C (1989) The b14 RNA mitochondrial maturase of Saccharomyces cerevisiae can stimulate intra-chromosomal recombination in Escherichia coli. Mol Gen Genet 216:70–74Google Scholar
  14. Goguel V, Delahodde A, Jacq C (1992) Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments. Mol Cell Biol 12:696–705Google Scholar
  15. Hensgens LAM, Bonen L, de Haan M, Van der Horst G, Grivell LA (1983) Two intron sequences in yeast mitochondrial cox1 gene: homology among URF-containing introns and strain-dependent variation in flanking exons, Cell 32:379–389Google Scholar
  16. Herbert CJ, Dujardin G, Labouesse M, Slonimski PP (1988) Divergence of the mitochondrial leucyl tRNA synthetase genes in two closely-related yeasts Saccharomyces cerevisiae and Saccharomyces douglasii: a paradigm of incipient evolution. Mol Gen Genet 213:297–309Google Scholar
  17. Kohli J (1987) Genetic nomenclature and gene list of the fission yeast Schizosaccharomyces pombe. Curr Genet 11:575–589Google Scholar
  18. Konrad EB (1977) Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 130:167–172Google Scholar
  19. Kotylak Z, Lazowska J, Hawthorne DC, Slonimski PP (1985) Intronencoded proteins of mitochondria: key elements of gene expression and genomic evolution. In: Quagliarello E; Slater EC, Palmieri F, Saccone C, Kroon AM (eds) Achievements and perspectives in mitochondrial research 2. Elsevier, Amsterdam, pp 1–20Google Scholar
  20. Labouesse M, Netter P, Schroeder R (1984) Molecular basis of the “box-effect”. A maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA. Eur J Biochem 144:85–93Google Scholar
  21. Lambowitz AM (1989) Infectious introns. Cell 56:323–326Google Scholar
  22. Lambowitz AM, Belfort M (1993) Introns as mobile genetic elements. Annu Rev Biochem 62:587–622Google Scholar
  23. Lambowitz AM, Perlman PS (1990) Involvement of aminoacyl-tRNA synthetases and other proteins in group-I and group-II intron splicing. Trends Biochem Sci 15:440–444Google Scholar
  24. Lang BF, Wolf K (1984) The mitochondrial genome of fission yeast Schizosaccharomyces pombe. 2. Localization of genes by interspecific hybridization in strain ade7-50h - and cloning of the genome in small fragments. Mol Gen Genet 196:465–472Google Scholar
  25. Lazowska J, Claisse M, Gargouri A, Kotylak Z, Spyridakis A, Slonimski PP (1989) Protein encoded by the third intron of cytochrome b gene in Saccharomyces cerevisiae is an RNA maturase. Analysis of mitochondrial mutants, RNA transcripts, proteins and evolutionary relationships. J Mol Biol 205:275–289Google Scholar
  26. Lazowska J, Szczepanek T, Macadre C, Dokova M (1992) Two homologous mitochondrial introns from closely-related Saccharomyces species differ by only a few amino-acid replacements in their open reading frames: one is mobile, the other is not. Compt Rend Acad Sci Paris 315:37–41Google Scholar
  27. Lückemann G, Merlos-Lange AM, Del Giudice L, Wolf K (1987) Genetic and physical analysis of transmission, segregation and recombination of mitochondrial genomes in the fission yeast Schizosaccharomyces pombe. Mol Gen 6:185–192Google Scholar
  28. Manna F, Massardo DR, Del Giudice L, Buonocore A, Nappo AG, Alifano P, Schäfer B, Wolf K (1991) The mitochondrial genome of Schizosaccharomyces pombe. Stimulation of intra-chromosomal recombination in Escherichia coli by the gene product of the first cox1 intron. Curr Genet 19:295–299Google Scholar
  29. Merlos-Lange AM, Kanbay F, Zimmer M, Wolf K (1987) DNA splicing of mitochondrial group-I and-II introns in Schizosaccharomyces pombe. Mol Gen Genet 206:273–278Google Scholar
  30. Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881Google Scholar
  31. Moran JV, Wernette CM, Mecklenburg KL, Butow RA, Perlman PS (1992) Intron 5α of the COX1 gene of yeast mitochondrial DNA is a mobile group-I intron. Nucleic Acids Res 20:4069–4076Google Scholar
  32. Perea J, Delahodde A, Goguel V, Hatat D, Sargueil B, Jacq C (1990) Function of intron-encoded proteins from yeast mitochondrial genome. RNA maturase and DNA endonuclease. In: Quagliarello E, Papa S, Palmieri F, Saccone C (eds) Structure, function and biogenesis of energy transfer systems. Elsevier, Amsterdam, pp 205–208Google Scholar
  33. Perlman PS, Butow RA (1989) Mobile introns and intron-encoded proteins. Science 246:1106–1109Google Scholar
  34. Sargueil B, Hatat D, Delhodde A, Jacq C (1990) In-vivo and in-vitro analyses of an intron-encoded DNA endonuclease from yeast mitochondria. Recognition site analysis by site-directed mutagenesis. Nucleic Acids Res 18:5659–5665Google Scholar
  35. Sargueil B, Delahodde A, Hatat D, Tian GL, Lazowska J, Jacq C (1991) A new specific DNA endonuclease in yeast mitochondria. Mol Gen Genet 225:340–341Google Scholar
  36. Scazzocchio C (1989) Group-I introns: do they only go home? Trends Genet 5:168–172Google Scholar
  37. Schäfer B, Merlos-Lange AM, Anderl C, Welser F, Zimmer M, Wolf K (1991) The mitochondrial genome of fission yeast: inability of all introns to splice autocatalytically, and construction and characterization of an intronless genome. Mol Gen Genet 225: 158–167Google Scholar
  38. Schapira M, Desdouets C, Jacq C, Perea J (1993) I-Sce III an intron-encoded DNA endonuclease from yeast mitochondria. Asymmetrical DNA-binding properties and cleavage reaction. Nucleic Acids Res 21:3683–3689Google Scholar
  39. Seraphin B, Faye G, Hatat D, Jacq C (1992) The yeast mitochondrial intron aI5α: associated endonuclease activity and in-vivo mobility. Gene 113:1–8Google Scholar
  40. Southern EM (1975) Detection of specific sequences among DNA fragments by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  41. Waring RB, Davies RW, Scazzocchio C, Brown TA (1982) Internal structure of a mitochondrial intron of Aspergillus nidulans. Proc Natl Acad Sci USA 79:6332–6336Google Scholar
  42. Weber S, Wolf K (1988) Two changes of the same nucleotide confer resistance to diuron and antimycin in the mitochondrial cytochrome b gene of Schizosaccharomyces pombe. FEBS Lett 237:31–34Google Scholar
  43. Wenzlau JM, Saldanha RJ, Butow RA, Perlman PS (1989) A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell 56:421–430Google Scholar
  44. Wernette CM, Saldahna R, Perlman PS, Butow RA (1990) Purification of a site-specific endonuclease, I-Sce II, encoded by intron 4α of the mitochondrial coxI gene of Saccharomyces cerevisiae. J Biol Chem 265:18976–18992Google Scholar
  45. Wolf K, Seitz-Mayr G, Kaudewitz F (1978) Extrachromosomal inheritance in Schizosaccharomyces pombe. VIII. Extent of cytoplasmic mixing in zygotes estimated by tetrad analysis of crosses involving mitochondrial markers conferring resistance to antimycin, chloramphenicol and erythromyin. Mol Gen Genet 164: 289–294Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Bernd Schäfer
    • 1
  • Birgit Wilde
    • 1
  • Domenica Rita Massardo
    • 2
  • Filomena Manna
    • 2
  • Luigi Del Giudice
    • 2
  • Klaus Wolf
    • 1
  1. 1.Institut für Biologie IV (Mikrobiologie)Rheinisch-Westfälische Technische HochschuleAachenGermany
  2. 2.Istituto Internationale di Genetica e BiofisicaCNRNapoliItaly

Personalised recommendations