Advertisement

Wood Science and Technology

, Volume 8, Issue 2, pp 123–137 | Cite as

Iron-catalyzed oxidation of wood carbohydrates

  • John A. Emery
  • Herbert A. Schroeder
Article

Summary

Douglas-fir and red oak wood meal, cellulose, and an 0-acetyl-4-0-methylglucuronoxylan were exposed to finely divided iron powder under conditions favorable for rusting. Analyses of the wood meal and polysaccharides following exposure indicated that rusting iron causes a decomposition of all wood constituents. Cellulose was oxidized in the presence of rusting iron to form an oxycellulose which was predominantly reducing in character. Direct depolymerization of cellulose and xylan also occurred. The deterioration was favored by an acidic environment, contrary to earlier reports that the primary degradation mechanism is alkalidependent. An iron-catalyzed oxidation of wood constituents is theorized to occur as a result of free-radical production associated with ferrous ion oxidation in the presence of organic compounds. The free radicals produced lead to the formation of hydrogen peroxide which allows Fenton-type reactions to occur.

Keywords

Cellulose Polysaccharide Acidic Environment Degradation Mechanism Iron Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E. 1955. The autoxidation of nonirradiated homogeneous aqueous solutions. Z. Elektrochem. 59: 903–906Google Scholar
  2. American Society for Testing and Materials. 1964. Part 16: Structural sandwich constructions; Wood; Adhesives.Google Scholar
  3. Baechler, R. H. 1954. Wood in chemical engineering construction. J. For. Prod. Res. Soc. 4(5): 332–336.Google Scholar
  4. Baechler, R. H., Richards, C. A. 1951. Deterioration of wood in cooling towers. Trans. Amer. Soc. Mech. Eng. 73: 1055–1059.Google Scholar
  5. Bawn, C. E. H. 1953. Free radical reactions in solution initiated by heavy metal ions. Discuss. Farad. Soc. 14: 181–190.Google Scholar
  6. Bell, W. A., Gibson, J. M. 1957. Degradation of cellulosic fibers in contact with rusting iron. Nature 180: 1065.Google Scholar
  7. Bouveng, H. O., Garegg, P. J., Lindberg, B. 1960. Position of the O-acetyl groups in birch xylan. Acta Chemica Scandinavica 14 (3): 742–748.Google Scholar
  8. Bouveng, H. O., Lindberg, B. 1965. Native Acetylated Wood Polysaccharides, In: Whistler, R. L. (Ed.): Methods in Carbohydrate Chemistry. Vol. V. General Polysaccharides. New York: Academic Press, 147–150.Google Scholar
  9. Brown, R. K., Purves, C. B. 1947. Nitrations of swollen and collapsed cotton linters. Pulp and Paper Mag. Can. 48 (5): 100–107.Google Scholar
  10. Browning, B. L. (Ed.) 1963. The chemistry of wood. New York: Interscience Publishers.Google Scholar
  11. Browning, B. L. 1967. Methods of wood chemistry, Vol. II. New York: Interscience Publishers.Google Scholar
  12. Browning, B. L., Bublitz, L. O. 1953. Wood deterioration in cooling towers. Ind. and Eng. Chem. 45 (7): 1516–1520.Google Scholar
  13. Desai, R. L. 1968. Photodegradation of cellulosic materials—a review of the literature. Pulp and Paper Mag. Can. 59 (8): 53–61.Google Scholar
  14. Entwistle, D., Cole, E. H., Wooding, N. S. 1949a. The autoxidation of alkali cellulose. Part I. Textile, Res. J. 19 (9): 527–544.Google Scholar
  15. Entwistle, D., Cole, E. H., Wooding, N. S. 1949b. The autoxidation of alkali cellulose. Part II. Textile Res. J. 19 (10): 609–624.Google Scholar
  16. Everett, M. R., Sheppard, F. 1944. Oxidation of carbohydrates; Ketouronic acids; Salt catalysis. Oklahoma City, Okla. Times-Journal Publishing Co.Google Scholar
  17. Farber, E. 1954. Chemical deterioration of wood in the presence of iron. Ind. and Eng. Chem. 46 (9): 1968–1972.Google Scholar
  18. Fischer, R. B. 1961. Quantitative chemical analysis. Philadelphia, Pa.: W. E. Saunders Co.Google Scholar
  19. George, P. 1954. The oxidation of ferrous perchlorate by molecular oxygen. Chem. Soc. J. (London): 4349–4459.Google Scholar
  20. Gray, V. R. 1958. The acidity of wood. J. Inst. Wood Sci. 1: 58–64.Google Scholar
  21. Hagglund, E. 1930. Determination of the copper number. Pulp and Paper Mag. Can. 30 (10): 389–391.Google Scholar
  22. Heuser, E. 1944. Chemistry of cellulose. New York: J. Wiley and Sons.Google Scholar
  23. Highley, T. L., Scheffer, T. C., Selbo, M. L. 1971. Wood minesweepers are sound after 15 years of service. Forest Prod. J. 21 (5): 46–48.Google Scholar
  24. Hunt, G. M., Garratt, G. A., 1953. Wood preservation. New York: McGraw-Hill Book Co., Inc.Google Scholar
  25. Ivanoff, V. I., Kaverznewa, E. D., Kouznetsova, Z. I. 1952. Primary oxidative transformations of cellulose under the influence of hydrogen peroxide. Akad. Nauk. Doklady. 86: 301–304. Translated by T. Halpert-Scanderbeg, Univ. British Columbia, 1954.Google Scholar
  26. Johnson, R. P. A. 1942. Wood Tanks. U.S.For. Prod. Lab. Report No. R1285. Madison, Wisc.Google Scholar
  27. Jones, J. K. N., Wise, L. E., Jappe, J. P. 1956. The action of alkali-containing metaborates on wood cellulose. Tappi 39 (3): 139–141.Google Scholar
  28. Kass, A., Wangaard, F. F., Schroeder, H. A. 1970. Chemical degradation of wood: The relationship between strength retention and pentosan content. Wood and Fiber 2 (1): 31–39.Google Scholar
  29. Kosik, M., Micko, M., Domansky, R. 1969. Autoxidation of beech wood and its components. Wood Science 1 (3): 167–171.Google Scholar
  30. Larsen, B., Smidsrod, O. 1967. Effect of pH and buffer ions on the degradation of carbohydrates by Fenton's reagent. Acta Chem. Scand. 21 (2): 552–564.Google Scholar
  31. Lindsley, C. H., Frank, M. 1953. Intrinsic viscosity of nitrocellulose. Ind. Eng. Chem. 45: 2491–2496.Google Scholar
  32. MacLean, H., Gardner, J. A. F. 1951. Deterioration of wooden dry kilns used for drying western hemlock lumber. Forest Ind. 78: 88, 90.Google Scholar
  33. Malm, C. J., Glegg, R. E., Luce, M. 1961. Solubility of cellulose in iron-sodium-tartrate solution. Tappi 44 (2): 102–108.Google Scholar
  34. Marian, J. E., Wissing, A. 1960a. The chemical and mechanical deterioration of wood in contact with iron. Part I—Mechanical deterioration. Svensk Papperstid. 63 (3): 47–57.Google Scholar
  35. Marian, J. E., Wissing, A. 1960b. The chemical and mechanical deterioration of wood in contact with iron. Part II—Chemical decomposition. Svensk Papperstid. 63 (4): 98–106.Google Scholar
  36. Marian, J. E., Wissing, A. 1960c. The chemical and mechanical deterioration of wood in contact with iron. Part III—Effect of some wood preservatives. Svensk Papperstid. 63 (5): 130–132.Google Scholar
  37. Marian, J. E., Wissing, A. 1960d. The chemical and mechanical deterioration of wood in contact with iron. Part IV—Prevention of deterioration. Svensk Papperstid. 63 (6): 174–183.Google Scholar
  38. Michie, R. I. C., Neale, S. M. 1959. Catalytic action of copper in the alkaline autoxidation of cellulose at low alkali concentration. Nature 183: 534–535.Google Scholar
  39. Millett, M. A., Schultz, J. S., Saeman, J. F. 1958. Measurement of ion-exchange capacity of some wood pulps and nitropulps. Tappi 41 (10): 560–567.Google Scholar
  40. Mitchell, R. L. 1946. Chain length measurements on nitrated cellulosic constituents of wood. Ind. Eng. Chem. 38 (8): 843–850.Google Scholar
  41. Ott, E., Spurlin, H. M., Grafflin, M. W. (Eds.). 1965. Cellulose and Cellulose Derivatives. New York: Interscience Publishers, Inc. (3 Vols.).Google Scholar
  42. Pigman, W., Horton, D. (Eds.). 1970. The carbohydrates-chemistry and biochemistry. New York: Academic Press.Google Scholar
  43. Posner, A. M. 1953. The kinetics of the charcoal catalyzed autoxidation of Fe2+ ion in dilute HCl solutions. Trans. Faraday Soc. 49: 389–395.Google Scholar
  44. Sarkanen, K. V., Ludwig, C. H. (Eds.) 1971. Lignins-occurrence, formation, structure and reactions. New York: Wiley-Interscience.Google Scholar
  45. Schumb, W. C., Satterfield, C. N., Wentworth, R. L. 1955. Hydrogen peroxide. New York: Reinhold Publishing Corp.Google Scholar
  46. Scott, G. 1965. Atmospheric oxidation and antioxidants. New York: Elsevier Publishing Co.Google Scholar
  47. Sitch, D. A. 1949. The isolation and fractionation of white birch holocellulose. Pulp and Paper Mag. Can. 50: 234–236, 290, 292.Google Scholar
  48. Stamm, A. J. 1949. Wood (properties of interest to a chemical engineer). Indust. and Eng. Chem. 41: 2149–2152, 40: 1923–1932 (1948), 39: 1256–1261 (1947).Google Scholar
  49. Stamm, A. J. 1961. Three methods for determining the pH of wood and paper. Forest Prod. J. 11 (7): 310–312.Google Scholar
  50. Stern, G. E. 1950. Deterioration of green wood along steel nail shanks and its influence on nail-holding properties. Virginia J. Sci. (July): 200–218.Google Scholar
  51. Technical Association of the Pulp and Paper Industry (Tappi). 1970. New York: Testing Methods, Recommended Practices, and Specifications.Google Scholar
  52. Thompson, W. S. 1969. Effect of Chemicals, Chemical Atmospheres, and Contact with Metals on Southern Pine Wood: A Review. Research Report No. 6, Forest Products Utilization Laboratory, Mississippi State Univ., State College, Miss.Google Scholar
  53. Timell, T. E. 1954a. The effect of rate of shear on the viscosity of dilute solutions of cellulose nitrate. Svensk Papperstid. 57 (21): 777–788.Google Scholar
  54. Timell, T. E. 1954b. The effect of solvent-solute interaction on the viscosity of dilute solutions of cellulose nitrate. Svensk Papperstid. 57 (24): 913–920.Google Scholar
  55. Timell, T. E. 1955. Chain length and chain length distribution of native white spruce cellulose. Pulp and Paper Mag. Can. 56 (7): 104–114.Google Scholar
  56. Timell, T. E. 1957a. Molecular properties of seven native wood celluloses. Tappi 40 (1): 25–29.Google Scholar
  57. Timell, T. E. 1957b. Molecular weight of native celluloses. Svensk Papperstid. 60 (22): 836–842.Google Scholar
  58. Timell, T. E. 1957c. Nitration as a means of isolating the alpha-cellulose component of wood. Tappi 40 (1): 30–38.Google Scholar
  59. Timell, T. E. 1959. Isolation of holocellulose from jack pine (Pinus banksiana). Pulp and Paper Mag. Can. 60 (1): T26–28.Google Scholar
  60. Timell, T. E. 1960a. Isolation and properties of a glucomannan from the wood of white birch (Betula papyrifera Marsh.). Tappi 43 (10): 844–848.Google Scholar
  61. Timell, T. E. 1960b. Isolation of hardwood glucomannans. Svensk Papperstid. 63 (15): 472–476.Google Scholar
  62. Timell, T. E. 1967. Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1 (1): 45–70.Google Scholar
  63. Timell, T. E., Glaudemans, C. P. J., Gillham, J. K. 1959. Recent studies on the polysaccharides of white birch and other hardwoods. Tappi 42 (8): 623–634.Google Scholar
  64. Timell, T. E., Jahn, E. C. 1954. A study of the isolation and polymolecularity of paper birch holocellulose. Svensk Papperstid. 54 (24): 831–846.Google Scholar
  65. Uhlig, H. H. 1963. Corrosion and corrosion control, and introduction to corrosion science and engineering. New York: John Wiley and Sons, Inc.Google Scholar
  66. Uri, N. 1956. Metal ion catalysis and polarity of environment in the aerobic oxidation of unsaturated fatty acids. Nature 177 (4521): 1177–1178.Google Scholar
  67. United States Department of Agriculture. 1955. Wood handbook, Agr. Handbook No. 72, Washington, D. C.Google Scholar
  68. Van Beckum, W. G., Ritter, G. J. 1937. Rapid methods for the determination of holocellulose and Cross and Bevan cellulose in wood. Paper Trade J. 105 (18): 127–130.Google Scholar
  69. Wangaard, F. F. 1966. Resistance of wood to chemical degradation. Forest Prod. J. 16 (2): 53–64.Google Scholar
  70. Waters, W. A. 1964. Mechanism of Oxidation of Organic Compounds. New York: John Wiley and Sons.Google Scholar
  71. Weiss, J. 1953. The autoxidation of ferrous ions in aqueous solution. Experimentia 9: 61–62.Google Scholar
  72. Welcher, F. J. 1958. The analytical uses of ethylenediaminete traacetic acid. New York: D. Van Nostrand Co.Google Scholar
  73. Whistler, Roy L., Wolfrom, M. L. (Eds.). 1962–1965. Methods in carbohydrate chemistry. New York: Academic Press (5 Vols.).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • John A. Emery
    • 1
  • Herbert A. Schroeder
    • 2
  1. 1.Department of Forest ScienceTexas A & M UniversityCollege Station
  2. 2.Department of Forest and Wood SciencesColorado State UniversityFort Collins

Personalised recommendations