Marine Biology

, Volume 126, Issue 4, pp 603–608

Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data

  • T. Patarnello
  • L. Bargelloni
  • V. Varotto
  • B. Battaglia


The phylogenetic relationships of the Antarctic krill Euphausia superba, the key species in the Antarctic food web, and other Antarctic and sub-Antarctic cuphausiids have been investigated using the 16S ribosomal mitochondrial gene. The phylogenetic reconstructions indicated that the Antarctic species form a monophyletic clade separated by the non-Antarctic species. The results revealed a large genetic divergence between the Antarctic (E. superba and E. crystallorophias) and sub-Antarctic species (E. vallentini). The time of separation between these species, estimated from the molecular data, is around 20 million years ago, which is comparable with the geological time of the formation of a circum-Antarctic water circulation and the Antarctic Polar Frontal Zone. The euphausiid molecular phylogeny therefore represents evidence for vicariant speciation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos AF (1984) Distribution of krill (Euphausia superba) and the hydrography of the Southern Ocean: large scale processes. J Crustacean Biol 4: 306–329Google Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, LondonGoogle Scholar
  3. Cunningham CW, Blackstone NW, Buss LW (1992) Evolution of king crabs from hermit crab ancestor. Nature, Lond 355: 539–542Google Scholar
  4. Deacon G (1984) The Antarctic Circumpolar Ocean. Cambridge University Press, CambridgeGoogle Scholar
  5. Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, San DiegoGoogle Scholar
  6. El-Sayed SZ (1994) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, CambridgeGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791Google Scholar
  8. Fevolden SE (1984) Biotic and physical environmental impact on genetic variation of krill. J Crustacean Biol 4: 206–223Google Scholar
  9. Fevolden SE (1988) Biochemical genetics and population structure of Euphausia superba. Comp Biochem Physiol 90B: 507–513Google Scholar
  10. Fevolden SE, Schneppenheim R (1989) Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar Biol 9: 533–539Google Scholar
  11. Fischer W, Hureau JC (1985) FAO species identification sheets for fishery purposes. Southern Ocean (Fishing Areas 48, 58 and 88) (CCAMLR convention area). Vol. 1 and 2. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  12. Gordon AL, Goldberg RD (1970) Circumpolar characteristics of Antarctic waters. In: Bushnel VC (ed) Antarctic map folio series, Folio 13. American Geographical Society, New YorkGoogle Scholar
  13. Gyllensten UB, Erlich HA (1988) Generation of single stranded DNA by polymerase chain reaction and its application to direct sequencing of the HLA-DQa locus. Proc natn Acad Sci USA 85: 7652–7656Google Scholar
  14. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J molec Evolut 16: 111–120Google Scholar
  15. Kumar S, Tamura K, Nei M (1993) Molecular Evolutionary Gentics Analysis (MEGA). The Pennsylvania State University, University Park, PaGoogle Scholar
  16. Lynch JD (1989) The gauge of speciation: on the frequencies of modes of speciation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, MassGoogle Scholar
  17. Mackintosh NA (1972) Life cycles of Antarctic krill in relation to water and water conditions. “Discovery” Rep 36: 1–94Google Scholar
  18. Mackintosh NA (1973) Distribution of postlarval krill in the Antarctic. “Discovery” Rep 36: 95–126Google Scholar
  19. Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). “Discovery” Rep 32: 33–464Google Scholar
  20. Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33: 199–212Google Scholar
  21. Palumbi SR, Kessing B, Croom H, Martin A, McIntosh C, McMillan WO (1991) The simple fool's guide to PCR Version 2.0. University of Hawaii, Department of Zoology, HonoluluGoogle Scholar
  22. Phan NV, Gomes V, Suzuki I, de AC Passos MJ (1989) Preliminary studies on chromosomes of Antarctic krill, Euphausia superba Dana. Polar Biol 10: 149–150Google Scholar
  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evolut 4: 406–525Google Scholar
  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, New YorkGoogle Scholar
  25. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc natn Acad Sci USA 74: 5463–5467Google Scholar
  26. Schneppenheim R, MacDonald CM (1984) Genetic variation and population structure of krill (Euphausia superba) in the Atlantic sector of Antarctic waters and off the Antarctic Peninsula. Polar Biol 3: 19–28Google Scholar
  27. Smith SL, Schnack-Schiel SB (1990) Polar zooplankton. In: Smith WO J (ed) Polar oceanography, Part B: chemistry, biology and geology. Academic Press, San Diego, pp 527–598Google Scholar
  28. Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP). Illinois Natural History Survey, Champaign, IllGoogle Scholar
  29. Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Molec Biol Evolut 12: 832–833Google Scholar
  30. Thiriot-Quiévreux C, Cuzin-Roudy J (1995) Karyological study of the Mediterranean krill Meganictiphanes norvegica (Crustacea: Euphausiacea). J Crustacean Biol 15: 79–85Google Scholar
  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position, specific-gap penalties and weight matrix choice. Nucleic Acid Res 72: 4673–4680Google Scholar
  32. Thomson MRA, Crame JA, Thomson JW (eds) (1991) Geological evolution of Antarctica. Cambridge University Press, CambridgeGoogle Scholar
  33. Tingey RJ (ed) (1991) The geology of Antarctica. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • T. Patarnello
    • 1
  • L. Bargelloni
    • 1
  • V. Varotto
    • 1
  • B. Battaglia
    • 1
  1. 1.Department of BiologyUniversity of PadovaPadovaItaly

Personalised recommendations