Marine Biology

, Volume 116, Issue 1, pp 137–146

Meiofauna on the seagrass Thalassia testudinum: population characteristics of harpacticoid copepods and associations with algal epiphytes

  • M. O. Hall
  • S. S. Bell
Article

Abstract

The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bell, S. S., Walters, K., Kern, J. C. (1984). Meiofauna from seagrass habitats: a review and prospectus for future research. Estuaries 7:331–338Google Scholar
  2. Chapman, G. (1955). Aspects of the fauna and flora of the Azores. 6. The density of animal life in the coralline alga zone. Ann. Mag. nat. Hist. 95: 801–805Google Scholar
  3. Colman, J. (1940). On the faunas inhabiting intertidal seaweeds. J. mar. biol. Ass. U.K. 24: 129–183Google Scholar
  4. Coull, B. C. (1970). Shallow water meiobenthos of the Bermuda platform. Oecologia 4: 325–357Google Scholar
  5. Coull, B. C., Creed, E. L., Eskin, R. A., Montagna, P. A., Palmer, M. A., Wells, J. B. J. (1983). Phytal meiofauna from the rocky intertidal at Murrells Inlet, South Carolina. Trans. Am. microsc. Soc. 102: 380–389Google Scholar
  6. Coull, B. C., Dudley, B. W. (1985). Dynamics of meiobenthic copepod populations: a long-term study (1973–1983). Mar. Ecol. Prog. Ser. 24: 219–229Google Scholar
  7. Coull, B. C., Fleeger, J. W. (1977). Long-term temporal variation and community dynamics of meiobenthic copepods. Ecology 58: 1136–1143Google Scholar
  8. D'Amours, D. (1988). Temperature beat on a tidal flat: potential cue for harpacticoid bloom. Neth. J. Sea Res. 22: 301–305Google Scholar
  9. Edgar, G. J. (1983). The ecology of south-east Tasmanian phytal animal communities. II. Seasonal change in plant and animal populations. J. exp. mar. Biol. Ecol. 70: 159–179Google Scholar
  10. Fleeger, J. W. (1980). Community structure of an estuarine meiobenthic copepod assemblage. Estuar. cstl mar. Sci. 10: 107–118Google Scholar
  11. Fleeger, J. W. (1985). Meiofaunal densities and copepod species composition in a Louisiana, U.S.A., estuary. Trans. Am. microsc. Soc. 104: 321–332Google Scholar
  12. Fraser, J. H. (1936). The distribution of rock pool Copepoda according to tidal level. J. Anim. Ecol. 5: 23–28Google Scholar
  13. Gee, J. M. (1987). Impact of epibenthic predation on estuarine intertidal harpacticoid copepod populations. Mar. Biol 96: 497–510Google Scholar
  14. Gunnill, F. C. (1982). Effects of plant size and distribution on the numbers of invertebrate species and individuals inhabiting the brown alga Pelvetia fastigiata. Mar. Biol. 69: 263–280Google Scholar
  15. Hagerman, L. (1966). The macro- and microfauna associated with Fucus serratus L., with some ecological remarks. Ophelia 3: 1–43Google Scholar
  16. Hall, M. O. (1988). Dynamics and interactions of epiphytic macroalgae and meiofauna on the seagrass Thalassia testudinum. Ph. D. dissertation. University of South Florida, TampaGoogle Scholar
  17. Hall, M. O., Bell, S. S. (1988). Response of small motile epifauna to complexity of epiphytic algae on seagrass blades. J. mar. Res. 46: 613–630Google Scholar
  18. Harlin, N. M. (1980). Seagrass epiphytes. In: Phillips, R. C., McRoy, C. P. (eds.) Handbook of seagrass biology: an ecosystem perspective. Garland STPM Press, New York, p. 117–151Google Scholar
  19. Hicks, G. R. F. (1977a). Species composition and zoogeography of marine phytal harpacticoid copepods from Cook Strait, and their contribution to total phytal meiofauna. N. Z. Jl mar. Freshwat. Res. 11: 441–469Google Scholar
  20. Hicks, G. R. F. (1977b). Species associations and seasonal population densities of marine phytal harpacticoid copepods from Cook Strait. N. Z. Jl mar. Freshwat. Res. 11: 621–643Google Scholar
  21. Hicks, G. R. F. (1977c). Breeding activity of marine phytal harpacticoid copepods from Cook Strait. N. Z. Jl mar. Freshwat. Res. 11: 645–666Google Scholar
  22. Hicks, G. R. F. (1979). Pattern and strategy in the reproductive cycles of benthic harpacticoid copepods. In: Naylor, E., Hartnoll, R. G. (eds.). Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford, p. 139–141 (Proc. 13th Eur. mar. Biol. Symp.)Google Scholar
  23. Hicks, G. R. F. (1980). Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J. exp. mar. Biol. Ecol 44: 157–192Google Scholar
  24. Hicks, G. R. F. (1985). Meiofauna associated with rocky shore algae. In: Moore, P. G., Seed, R. (eds.). The ecology of rocky coasts. Hoddr & Stoughton, London, p. 36–56Google Scholar
  25. Hicks, G. R. F. (1986). Distribution and behaviour of meiofaunal copepods inside and outside seagrass beds. Mar. Ecol. Prog. Ser. 31: 159–170Google Scholar
  26. Hicks, G. R. F., Coull, B. C. (1983). The ecology of marine meiobenthic harpacticoid copepods. Oceanogr. mar. Biol. A. Rev. 21: 67–175Google Scholar
  27. Hopper, B. E., Meyers, S. P. (1967). Folicolous marine nematodes on turtle grass Thalassia testudinum König, in Biscayne Bay, Florida. Bull. mar. Sci. 17: 471–517Google Scholar
  28. Humm, H. J. (1964). Epiphytes of the seagrass, Thalassia testudinum, in Florida. Bull. mar. Sci. Gulf Caribb. 14: 306–341Google Scholar
  29. Johnson, S. C., Scheibling, R. E. (1987a). Structure and dynamics of epifaunal assemblages on intertidal macroalgae Ascophyllum nodosum and Fucus vesiculosus in Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 37: 209–227Google Scholar
  30. Johnson, S. C., Scheibling, R. E. (1987b). Reproductive patterns of harpacticoid copepods on intertidal macroalgae (Ascophyllum nodosum and Fucus vesiculosus) in Nova Scotia, Canada. Can. J. Zool. 65: 129–141Google Scholar
  31. Kangas, P. (1978). On the quantity of meiofauna among the epiphytes of Fucus vesiculosus in the Askö area, northern Baltic Sea. Contr. Askö Lab., Univ. Stockholm 24: 1–32Google Scholar
  32. Kikuchi, T. (1980). Faunal relationships in temperate seagrass beds. In: Phillips, R. C., McRoy, C. P. (eds.) Handbook of seagrass biology: an ecosystem perspective. Garland STPM Press, New York, p. 153–172Google Scholar
  33. Kito, K. (1975). Preliminary report on the phytal animals in the Sargassum confusum region in Oshoro Bay, Hokkaido. J. Fac. Sci. Hokkaido Univ. (Ser. 6: Zool.) 20: 141–158Google Scholar
  34. Kito, K. (1977). Phytal animals in the Sargassum confusum region in Oshoro Bay, Hokkaido: phenology of harpacticoid copepods. J. Fac. Sci. Hokkaido Univ. (Ser. 6: Zool.) 20: 691–696Google Scholar
  35. Kito, K. (1982). Phytal marine nematode assemblage on Sargassum confusum Agardh, with reference to the structure and seasonal fluctuations. J. Fac. Sci. Hokkaido Univ. (Ser. 6: Zool.) 23: 143–161Google Scholar
  36. Knatz, G. (1986). Temporal distribution and reproductive patterns of harpacticoid copepods from Los Angeles-Long Beach Harbors. J. Crustacean Biol. 6: 79–88Google Scholar
  37. Leber, K. (1983). Feeding ecology of decapod crustaceans and the influence of vegetation on foraging success in a sub-tropical seagrass meadow. Ph. D. dissertation. Florida State University, TallahasseeGoogle Scholar
  38. Lewis, J. B., Hollingworth, C. E. (1982). Leaf epifauna of the seagrass Thalassia testudinum. Mar. Biol. 71: 41–49Google Scholar
  39. Meyer, H. A. (1990). Ecology of the harpacticoid Metis holothuriae: patterns of population structure, detrital relationships and synchronization of recruitment. Ph. D. dissertation. University of S. Florida, TampaGoogle Scholar
  40. Meyer, H. A., Bell, S. S. (1989). Response of harpacticoid copepods to detrital accumulation on seagrass blades: a field experiment with Metis holothuriae (Edwards). J. exp. mar. Biol. Ecol. 132: 141–149Google Scholar
  41. Nagle, J. S. (1968). Distribution of the epibiota of macroepibenthic plants. Contr. mar. Sci. Univ. Tex. 13: 105–144Google Scholar
  42. Noodt, W. (1957). Zur Okologie der Harpacticoidea (Crust. Cop.) des Eulitorals der Deutschen Meeresküste und der angrenzenden Brackgewässer. Z. Morph. Ökol. Tiere. 46: 149–242Google Scholar
  43. Novak, R. (1982). Spatial and seasonal distribution of the meiofauna in the seagrass Posidonia oceanica. Neth. J. Sea Res. 16: 380–388Google Scholar
  44. Ohm, G. (1964). Die Besiedlung der Fucus-Zone der Kieler Bucht und der westlichen Ostsee unter besonderer Berücksichtigung der Mikrofauna. Kieler Meeresforsch. 1: 1–48Google Scholar
  45. Orth, R. J., Van Montfrans, J. (1984). Epiphyte-seagrass relationships with an emphasis on the role of micrograzing: a review. Aquat. Bot. 18: 43–69Google Scholar
  46. Pallares, R. E., Hall, M. A. (1974a). Analisis bioestadistico-ecologico de la fauna de copepodos asociados a los bosques de Macrocystis pyrifera. Physis, B. Aires 33: 275–319Google Scholar
  47. Pallares, R. E., Hall, M. A. (1974b). Analisis bioestadistico-ecologico de la fauna de copepodos asociados a los bosques de Macrocystis pyrifera (Conclusion). Physis, B. Aires 33: 409–432Google Scholar
  48. Palmer, M. A., Gust, G. (1985). Dispersal of meiofauna in a turbulent tidal creek. J. mar. Res. 43: 179–210Google Scholar
  49. Sherman, K. M., Meeter, D. A., Reidenauer, J. A. (1984). A technique for subsampling an abundant taxon while completely sorting other taxa. Limnol. Oceanogr. 29: 433–439Google Scholar
  50. Sogard, S. M. (1984). Utilization of meiofauna as a food source by a grassbed fish, the spotted dragonet Callionymus pauciradiatus. Mar. Ecol. Prog. Ser. 17: 183–191Google Scholar
  51. Thorson, G. (1957). Bottom communities (sublittoral or shallow shelf). Mem. geol. Soc. Am. 67: 461–534Google Scholar
  52. Tipton, K., Bell, S. S. (1988). Foraging patterns of two sygnathid fishes: importance of harpacticoid copepods. Mar. Ecol. Prog. Ser. 47: 31–43Google Scholar
  53. Tito de Morais, L., Bodiou, J. Y. (1984). Predation on meiofauna by juvenile fish in a Western Mediterranean flatfish nursery ground. Mar. Biol. 82: 209–215Google Scholar
  54. Walters, K. (1987). Experimental investigations of vertically migrating meiofaunal populations in subtropical sand and seagrass habitats. Ph. D. dissertation. University of S. Florida, TampaGoogle Scholar
  55. Walters, K., Bell, S. S. (1986). Diel patterns of active vertical migration in seagrass meiofauna. Mar. Ecol. Prog. Ser. 34: 95–103Google Scholar
  56. Wieser, W. (1952). Investigations on the microfauna inhabiting seaweeds on rocky coasts. IV. Studies on the vertical distribution of the fauna inhabiting seaweeds below the Plymouth laboratory. J. mar. biol. Ass. U.K. 31: 145–174Google Scholar
  57. Wieser, W. (1959). Zur Okologie der Fauna mariner Algen mit besonderer Berücksichtigung des Mittelmeeres. Int. Revue ges. Hydrobiol 44: 137–180Google Scholar
  58. Zavodnik, D. (1967). The community of Fucus virsoides (Don.) J. Ag. on a rocky shore near Rovinji (Northern Adriatic). Thalassia jugosl. 3: 105–113Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. O. Hall
    • 1
  • S. S. Bell
    • 1
  1. 1.Department of BiologyUniversity of South FloridaTampaUSA
  2. 2.Florida Marine Research InstitutePetersburgUSA

Personalised recommendations