Advertisement

Marine Biology

, Volume 116, Issue 1, pp 39–45 | Cite as

Environmental parameters affecting induction of hatching in halibut (Hippoglossus hippoglossus) embryos

  • J. V. Helvik
  • B. T. Walther
Article

Abstract

The influence of some environmental parameters in the regulation of hatching of halibut (Hippoglossus hippoglossus) embryos is reported. The progress of hatching was observed when light, oxygen and turbulence were varied. Environmental parameters influenced the induction of hatching, while the exit mechanism of halibut embryos was unaltered. Light arrests hatching of halibut eggs, and transfer of such eggs to darkness resulted in rapid and synchronous hatching. Hatching under different oxic conditions shows that better oxygen availability does not postpone the time of hatching in halibut. Oxygen seems therefore to have a minor role in the regulation of hatching in halibut. Induction of hatching was delayed under hypoxic conditions (15 mm Hg) compared to higher oxygen levels, but this probably reflects a minimal oxygen level needed for metabolism during hatching. Non-stationary water conditions delayed hatching for 1.5 d both in eggs incubated in turbulence, and in eggs subjected to turbulence at the time of hatching. Turbulence had an immediate inhibitory effect on hatching, but this inhibition was reversible under stationary conditions, under which hatching resumed after 150 to 250 min. We conclude that hatching in halibut occurs after sensory input from environmental factors which are integrated by the embryo before proceeding to hatch.

Keywords

Oxygen Environmental Factor Stationary Condition Water Condition Hypoxic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Berezovsky, V. A., Goida, E. A., Mukalov, I. O., Sushko, B. S. (1979). Experimental study of oxygen distribution in Misgurnis fossilis eggs. Fiz. Zh. (Kiev) 25: 379–389Google Scholar
  2. Blaxter, J. H. S. (1988). Pattern and variety in development. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. XI, Part A. Academic Press, Inc., London, p. 1–58Google Scholar
  3. Brännäs, E. (1987). Influence of photoperiod and temperature on hatching and emergence of Atlantic salmon (Salmo salar L.). Can. J. Zool. 65: 1503–1508Google Scholar
  4. Cotelli, F., Andronico, F., Brivio, M., Lamia, C. L. (1988). Structure and composition of the fish egg chorion (Carassius auratus). J. Ultrastruct. molec. Struct. Res. 99: 70–78Google Scholar
  5. DiMichele, L., Powers, D. A. (1984). The relationship between oxygen consumption rate and hatching in Fundulus heteroclitus. Physiol. Zöol. 57: 46–51Google Scholar
  6. DiMichele, L., Taylor, M. H. (1980). The environmental control of hatching in Fundulus heteroclitus. J. exp. Zool. 214: 181–187Google Scholar
  7. Hagenmaier, H. E. (1972). Zum Schlüpfprozess bei Fischen. II. Gewinnung und Charakterisierung des Schlüpfsekretes bei der Regenbogenforelle (Salmo Gairdneri RICH). Experientia 28: 1214–1215Google Scholar
  8. Hagenmaier, H. E. (1973). The hatching process in fish embryos: the structure, polysaccharide and protein cytochemistry of the chorion of the trout egg, Salmo Gairdneri (RICH). Acta histochem. 47: 61–69Google Scholar
  9. Haug, T. (1990). Biology of the Atlantic halibut, Hippoglossus hippoglossus (L., 1758). Adv. mar. Biol. 26: 1–70Google Scholar
  10. Helvik, J. V. (1992). Biology of hatching. PhD thesis, Univ. of Bergen, Bergen. ISBN 82-7558-007-2Google Scholar
  11. Helvik, J. V., Oppen-Berntsen, D. O., Flood, P. R., Walther, B. T. (1991a). Morphogenesis of the hatching gland of Atlantic halibut (Hippoglossus hippoglossus). Wilhelm Roux Arch. dev. Biol. 200: 180–187Google Scholar
  12. Helvik, J. V., Oppen-Berntsen, D. O., Walther, B. T. (1991b). The hatching mechanism in Atlantic halibut (Hippoglossus hippoglossus). Int. J. devl. Biol. 35: 9–16Google Scholar
  13. Helvik, J. V., Walther, B. T. (1992). Photo-regulation of the hatching process of halibut (Hippoglossus hippoglossus) eggs. J. exp. Zool. 263: 204–209Google Scholar
  14. Hemple, G. (1979). Early life history of marine fish. The egg stage. Washington Sea Grant Publ. Univ. of Washington Press, SeattleGoogle Scholar
  15. Ishida, I. (1985). Hatching enzyme: past, present and future. Zool. Sci. 2: 1–10Google Scholar
  16. Jelmert, A., Rabben, H. (1987). Upwelling incubators for eggs of the Atlantic halibut (Hippoglossus hippoglossus L.). Int. Counc. Explor. Sea. Comm. Meet. F: 20: 1–8Google Scholar
  17. Luczynski, M. (1984). Temperature and electric shock control the secretion of chorionase in Coregoninae embryos. Comp. Biochem. Physiol. 78 A: 371–374Google Scholar
  18. Lønning, S., Kjørsvik, E., Haug, T., Gulliksen, B. (1982). The early development of the halibut, Hippoglossus hippoglossus (L.), compared with other marine teleosts. Sarsia 67: 85–91Google Scholar
  19. O'Brien, R. N., Visaisouk, S., Raine, R., Alderdice, D. F. (1978). Natural convection: a mechanism for transporting oxygen to incubating salmon eggs. J. Fish. Res. Bd. Can. 35: 1316–1321Google Scholar
  20. Oppen-Berntsen, D. O., Bogsnes, A., Walther, B. T. (1990a). The effects of hypoxia, alkalinity and neurochemicals on hatching of Atlantic salmon (Salmo salar) eggs. Aquaculture, Amsterdam 86: 417–430Google Scholar
  21. Oppen-Berntsen, D. O., Helvik, J. V., Walther, B. T. (1990b). The major structural proteins of cod (Gadus morhua) eggshells and protein crosslinking during teleost egg hardening. Devl Biol. 137: 258–265Google Scholar
  22. Rombough, P. J. (1988). Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. In: Hoar, W. S., Randall, D. J. (eds.) Fish physiology, Vol. VI, Part A. Academic Press, Inc., New York, p. 59–161Google Scholar
  23. Schoots, A. F. M., Meijer, R. C., Denucé, J. M. (1983). Dopaminergic regulation of hatching in fish embryos. Devl Biol. 100: 59–63Google Scholar
  24. Schoots, A. F. M., Stikkelbroeck, J. J. M., Bekhuis, J. F., Denucé, J. M. (1982). Hatching in teleostean fishes: fine structural changes in the egg envelope during enzymatic breakdown in vivo and in vitro. J. Ultrastruct. Res. 80: 185–196Google Scholar
  25. Taylor, M. H., DiMichele, L., Leach, G. J. (1977). Egg stranding in the life cycle of the mummichog, Fundulus heteroclitus. Copeia 397–399Google Scholar
  26. Trifonova, A. N. (1937) La physiologie de la différenciation et de la croissance. I. L'equilibre Pasteur-Mayerhof dans le développement des poissons. Acta. zool., Stockh. 18: 375–445Google Scholar
  27. Yamagami, K. (1988). Mechanisms of hatching in fish. In: Hoar, W. S., Randall, D. J. (eds.) Academic Press, Inc., New York, p. 447–499Google Scholar
  28. Yamagami, K., Hamazaki, T. (1985). Influence of light on hatching of medaka embryos. Zool Sci. 2: 928 aGoogle Scholar
  29. Yasumasu, S., Iuchi, I., Yamagami, K. (1989a). Purification and partial characterization of high choriolytic enzyme (HCE), a component of the hatching enzyme of the teleost, Oryzias latipes. J. Biochem., Tokyo 105: 204–211Google Scholar
  30. Yasumasu, S., Iuchi, I., Yamagami, K. (1989b). Isolation and some properties of low choriolytic enzyme (LCE), a component of the hatching enzyme of the teleost, Oryzias latipes. J. Biochem., Tokyo 105: 212–218Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. V. Helvik
    • 1
    • 2
  • B. T. Walther
    • 1
    • 2
  1. 1.Laboratory of Marine Molecular Biology, HiBUniversity of BergenBergenNorway
  2. 2.Department of BiochemistryUniversity of BergenBergenNorway

Personalised recommendations