Marine Biology

, Volume 118, Issue 3, pp 433–442 | Cite as

Feeding mechanism of the brisingid starfish Novodinia antillensis

  • R. H. Emson
  • C. M. Young


This paper describes the food and feeding mechanisms of the bathyal brisingid sea-star Novodinia antillensis (A. H. Clark, 1934). N. antillensis is shown to be an opportunistic suspension feeder capable of capturing living planktonic crustaceans of a wide range of sizes. The sea-star extends its 10 to 14 arms into water currents to form a feeding fan with a large surface area, and uses highly retentive pedicellaria on the lateral arm spines to grasp and retain prey. The flexible arms form arm loops to complete the capture. The pedicellaria have a structure very similar to that used by other species known to capture macroscopic prey and, although they are an order of magnitude smaller, they probably function in a similar manner.


Large Surface Area Water Current Suspension Feeder Planktonic Crustacean Feeding Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chia, F.-S., Amerongon, F. (1975). On the prey-catching pedicellaria of a starfish Stylasterias forreri (de Loriol). Can. J. Zool. 53: 48–75Google Scholar
  2. Clark, A. M., Downey, M. E. (1992). Starfishes of the Atlantic. Chapman & Hall, LondonGoogle Scholar
  3. Dearborn, J. H., Edwards, K. C., Fratt, D. B. (1991). Diet, feeding behaviour and surface morphology of the multi-armed Antarctic seastar Labidiaster annulatus (Echinodermata: Asteroidea). Mar. Ecol. Prog. Ser. 77: 65–84Google Scholar
  4. Dietrich, H. F., Fontaine A. R. (1975). A decalcification method for ultrastructure of echinoderm tissues. Stain Technol. 50: 351–354Google Scholar
  5. Downey, M. E. (1986). Revision of the Atlantic Brisingida (Echinodermata: Asteroidea), with a description of a new genus and family. Smithson. Contr. Zool. 4. 35: 1–57Google Scholar
  6. Emson, R. H., Mladenov, P. V. (1992). Field and laboratory observations of the feeding of Macrophiothrix variabilis (Lamarck) with notes on the feeding of Ophiactis savignyi (Müller and Troschel). In: Morton, B., (ed) The marine fauna and flora of Hong Kong. Proceedings of the Fourth International Marine Biological Workshop. Hong Kong University Press, Hong Kong, p. 769–778Google Scholar
  7. Emson, R. H., Mladenov, P. V., Barrow, K. (1991). The feeding mechanism of the basket star Gorgonocephalus arcticus. Can. J. Zool. 69: 449–455Google Scholar
  8. Fisher, W. K. (1940). Asteroidea. ‘Discovery’ Rep. 20: 69–306Google Scholar
  9. Gage, J. D., Tyler, P. A. (1992). Deep sea biology. Cambridge University Press, CambridgeGoogle Scholar
  10. Hendler, G. (1982). Slow flicks show star tricks; elapsed time analysis of basket-star (Astrophyton muricatum) feeding behaviour. Bull. mar. Sci. 32: 909–918Google Scholar
  11. Humason, G. L. (1979). Animal tissue technique. 4th ed. W. H. Freeman & Co., San FranciscoGoogle Scholar
  12. Hyman, L. H. (1955). The invertebrates. Vol. 4. Echinodermata. McGraw Hill, New York.Google Scholar
  13. Jangoux, M. (1982). Food and feeding mechanisms: Asteroidea. In: Jangoux, M., Lawrence, J. M. (eds.) Echinoderm nutrition. Balkema, Rotterdam, p. 117–160Google Scholar
  14. Lawrence, J. M. (1987) A functional biology of echinoderms. Croom Helm, LondonGoogle Scholar
  15. Mortensen, T. (1927). Handbook of the echinoderms of the British Isles, Oxford University Press, OxfordGoogle Scholar
  16. Pawson, D. L. (1976). Some aspects of the biology of deep sea echinoderms. Thalassia jugosl. 12: 287–293Google Scholar
  17. Roberts, M. P., Campbell, A. C. (1988). Functional anatomy of pedicellaria from Asterias rubens L. In: R. D. Burke et al. (eds.) Echinoderm biology. Balkema, Rotterdam, p. 725–733Google Scholar
  18. Roe, H. S. J., (1988). Midwater biomass profiles over the Madeira Abyssal Plain and the contribution of copepods. Hydrobiologia 167/8: 168–181Google Scholar
  19. Ruff, R. R. (1991). A new species of Bathynoe (Polychaeta: Polynoidae) from the Northeast Pacific Ocean commensal with two species of deep-water asteroids. Ophelia (Suppl.) 5: 219–230Google Scholar
  20. Sars, G. O. (1875). On some remarkable forms of animal life from the great deeps off the Norwegian coast. II: Researches on the structure and affinities of the genus Brisinga, based on the study of a new species B. coronata. Christiania University, ChristianiaGoogle Scholar
  21. Smith, J. E. (1937). On the nervous system of Marthasterias glacialis (L.). Phil. Trans. R. Soc. (Ser. B) 227: 111–173Google Scholar
  22. Tyler, P. A., Zibrowius, H. (1992). Submersible observations of the invertebrate fauna of the continental slope south west of Ireland (NE Atlantic Ocean). Oceanol. Acta 15: 211–226Google Scholar
  23. Warner, G. F. (1977). On the shapes of passive suspension feeders. In: Keegan, B. F., O'Ceidigh, P., Boaden, P. J. S. (eds.) Biology of benthic organisms. Pergamon, Oxford, p. 567–576Google Scholar
  24. Warner, G. F., Woodley, J. D. (1975). Suspension feeding in the brittle-star Ophiothrix fragilis. J. mar. biol. Ass. U.K. 55: 199–210Google Scholar
  25. Wilkie, I. C., Emson, R. H. (1988). Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. In: C. R. C. Paul, Smith, A. B. (eds.) Echinoderm phylogeny and evolutionary biology. Oxford Scientific Publications, Oxford, p. 311–330Google Scholar
  26. Wood, R. L., Luft, J. H. (1965) The influence of buffer systems on fixation with osmium tetroxide. J. Ultrastruct. Res. 12: 22–45Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. H. Emson
    • 1
  • C. M. Young
    • 2
  1. 1.Division of Life SciencesKing's CollegeLondonEngland
  2. 2.Harbor Branch Oceanographic InstitutionFort PierceUSA

Personalised recommendations