Marine Biology

, Volume 118, Issue 3, pp 403–413 | Cite as

Abundance of estuarine crab larvae is associated with tidal hydrologic variables

  • M. C. DeVries
  • R. A. Tankersley
  • R. B. ForwardJr.
  • W. W. Kirby-Smith
  • R. A. LuettichJr.


Abundances of brachyuran megalopae and juveniles were measured throughout consecutive tidal cycles during six 2 to 3 d sampling periods in summer 1992, and associated with rates of change of tidal hydrologic variables in the Newport River Estuary. Current speeds and rates of pressure change fitted sinusoidal (tidal) models well; however, rates of salinity and temperature change did not. Analysis of plankton samples taken during spring and neap tides showed peak abundances during nighttime rising tides for all taxonomic groups: Callinectes sapidus, Uca spp., Xanthidae, and Pinnixa spp. megalopae, and Pinnotheres spp. juveniles. Megalopal and juvenile abundances from time-intensive sampling were related to rates of changes in the hydrologic variables using stepwise logistic regression. No hydrologic variable accounted well for the presence of Uca spp. megalopae. Megalopal presence was best predicted by current speed for Pinnixa spp. megalopae, and rates of changes in pressure for xanthid megalopae and Pinnotheres spp. juveniles, and salinity for C. sapidus megalopae. These variables might act as cues causing megalopae to ascend into the water column at a particular point in the flooding tide, and subsequently descend to or near the bottom prior to ebb flow. In this way, larvae which develop on the continental shelf or lower estuary undergo transport up the estuary by behaviorally altering their swimming activity and depth concurrent with tidal changes.


Logistic Regression River Estuary Continental Shelf Tidal Cycle Current Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batschelet, E. (1981). Circular statistics in biology. Academic Press, New YorkGoogle Scholar
  2. Boicourt, W. C. (1988). Recruitment dependence on planktonic transport in coastal waters. In: Rothschild, B. J. (ed.) Toward a theory on biological-physical interactions in the world ocean. Kluwer Academic Publishers, Norwell, Mass., p. 183–202Google Scholar
  3. Boudreau, B., Simard, Y., Bourget, E. (1991). Behavioural responses of the planktonic stages of the American lobster Homarus americanus to thermal gradients, and ecological implications. Mar. Ecol. Prog. Ser. 76: 13–23Google Scholar
  4. Brookins, K. G., Epifanio, C. E. (1985). Abundance of brachyuran larvae in a small coastal inlet over six consecutive tidal cycles. Estuaries 8: 60–67Google Scholar
  5. Chatfield, C. (1989). The analysis of time series: an introduction. Chapman & Hall, New YorkGoogle Scholar
  6. Christy, J. H. (1982). Adaptive significance of semilunar cycles of larval release in fiddler crabs (genus Uca): test of an hypothesis. Biol. Bull. mar. biol. Lab., Woods Hole 163: 251–263Google Scholar
  7. Christy, J. H. (1989). Rapid development of megalopae of the fiddler crab Uca pugilator reared over sediment: implications for models of larval recruitment. Mar. Ecol. Prog. Ser. 57: 259–265Google Scholar
  8. Christy, J. H., Stancyk, S. E. (1982). Timing of larval production and flux of invertebrate larvae in a well-mixed estuary. In: Kennedy, V. (ed.) Estuarine comparisons. Academic Press, New York, p. 489–503Google Scholar
  9. Cronin, T. W. (1982). Estuarine retention of larvae of the crab Rhithropanopeus harrisii. Estuar., cstl Shelf Sci. 15: 207–220Google Scholar
  10. Cronin, T. W., Forward, R. B., Jr. (1979). Tidal vertical migration: and endogenous rhythm in estuarine crab larvae. Science, N. Y. 205: 1020–1022Google Scholar
  11. Cronin, T. W., Forward, R. B., Jr. (1983). Vertical migration rhythms of newly hatched larvae of the estuarine crab, Rhithropanopeus harrisii. Biol. Bull. mar. biol. Lab., Woods Hole 165: 139–153Google Scholar
  12. Dittel, A. I., Epifanio, C. E. (1982). Seasonal abundance and vertical distribution of crab larvae in Delaware Bay, USA. Estuar., cstl Shelf Sci. 18: 1–12Google Scholar
  13. Dittel, A., I., Epifanio, C. E. (1990). Seasonal and tidal abundance of crab larvae in a tropical mangrove system, Gulf of Nicoya, Costa Rica. Mar. Ecol. Prog. Ser. 65: 25–34Google Scholar
  14. Epifanio, C. E. (1988). Transport of invertebrate larvae between estuaries and the continental shelf. Am. Fish. Soc. Symp. 3: 104–115Google Scholar
  15. Epifanio, C. E., Little, K. T., Rowe, P. M. (1988). Dispersal and recruitment of fiddler crab larvae in the Delaware River estuary. Mar. Ecol. Prog. Ser. 43: 181–188Google Scholar
  16. Epifanio, C. E., Masse, A. K., Garvine, R. W. (1989). Transport of blue crab larvae by surface currents in the Delaware Bay, USA. Estuar., cstl Shelf Sci. 54: 35–41Google Scholar
  17. Epifanio, C. E., Valenti, C. C., Pembroke, A. E. (1984). Dispersal and recruitment of blue crab larvae in the Delaware Bay, USA. Estuar., cstl Shelf Sci. 18: 1–12Google Scholar
  18. Forward, R. B., Jr. (1987). Crustacean larval vertical migration: a perspective. In: Herrnkind, W. F., Thisle, A. B. (eds.) Signposts in the Sea. Florida State University Tallahassee, p. 29–44Google Scholar
  19. Forward, R. B., Jr. (1989a). Behavioral responses of crustacean larvae to rates of salinity change. Biol. Bull. mar. biol. Lab., Woods Hole 176: 229–238Google Scholar
  20. Forward, R. B., Jr. (1989b). Depth regulation of larval marine decapod crustaceans: test of an hypothesis. Mar. Biol. 102: 195–201Google Scholar
  21. Forward, R. B., Jr. (1990a). Response of larval crustaceans to rates of change in temperature. Biol. Bull. mar. biol. Lab., Woods Hole 178: 195–204Google Scholar
  22. Forward, R. B., Jr. (1990b). Responses of crustacean larvae to hydrostatic pressure: behavioral basis of high barokinesis. Mar. Behav. Physiol. 180: 1–11Google Scholar
  23. Forward, R. B., Jr., Cronin, T. W. (1980). Tidal rhythms in activity and phototaxis by an estuarine crab larva. Biol. Bull. mar. biol. Lab., Woods Hole 158: 295–303Google Scholar
  24. Forward, R. B., Jr., Wellins, C. A. (1989). Behavioral responses of a larval crustacean to hydrostatic pressure: Rhithropanopeus harrisii (Brachyura: Xanthidae). Mar. Biol. 101: 159–172Google Scholar
  25. Forward, R. B., Jr., Wellins, C. A., Buswell, C. U. (1989) Behavioral responses of larvae of the crab Neopanope sayi to hydrostatic pressure. Mar. Ecol. Prog. Ser. 67: 267–277Google Scholar
  26. Giese, G. L., Wilder, H. B., Parker, G. G., Jr. (1979). Hydrology of major estuaries and sounds of North Carolina. U. S. Geological Survey Water Resources Investigations 79–46. U. S. Geological Survey, Raleigh, North Carolina, p. 1–107Google Scholar
  27. Hill, A. E. (1991). A mechanism for horizontal zooplankton transport by vertical migration in tidal currents. Mar. Biol. 111: 485–492Google Scholar
  28. Hosmer, D. W., Lemeshow, S. (1989). Applied logistic regression. Wiley, New YorkGoogle Scholar
  29. Johnson, D. F. (1985). The distribution of brachyuran crustacean megalopae in the waters of York River, lower Chesapeake Bay and adjacent shelf: implication for recruitment. Estuar., cstl Shelf Sci. 20: 693–705Google Scholar
  30. Kjerfve, B., Proehl, J. A., Schwing, F. B., Seim, H. E., Marozas, M. (1982). Temporal and spatial considerations in measuring estuarine water fluxes. In: Kennedy, V. S. (ed.) Estuarine comparisons. Academic Press, New York, p. 37–51Google Scholar
  31. Koch, G. G. (1970). The use of non-parametric methods in the statistical analysis of a complex split-plot experiment. Biometrics 26: 105–128Google Scholar
  32. Kurata, H. (1970). Studies on the life histories of decapod Crustacea of Georgia. Part III. Larvae of decapod Crustacea of Georgia. University of Georgia Marine Institute, Sapelo Island, Georgia (Final Report 1-274)Google Scholar
  33. Lambert, R., Epifanio, C. E. (1982). A comparison of dispersal strategies in two genera of brachyuran crab in a secondary estuary. Estuaries 5: 182–188Google Scholar
  34. Litaker, W., Duke, C. S., Kenney, B. E., Ramus, J. (1987). Short-term environmental variability and phytoplankton abundance in a shallow tidal estuary. I. Winter and summer. Mar. Biol. 96: 115–121Google Scholar
  35. Litaker, W., Duke, C. S., Kenney, B. E., Ramus, J. (1988). Diel chl a and phaeopigment cylces in a shallow tidal estuary: potential role of microzooplankton grazing. Mar. Ecol. Prog. Ser. 47: 259–270Google Scholar
  36. Litaker, W., Duke, C. S., Kenney, B. E., Ramus, J. (1993). Shortterm environmental variability and phytoplankton abundance in a shallow tidal estuary. II. Spring and fall. Mar. Ecol. Prog. Ser. 94: 141–154Google Scholar
  37. Little, K. T., Epifanio, C. E. (1991). Mechanism for the reinvasion of an estuary by two species of brachyuran megalopae. Mar. Ecol. Prog. Ser. 68: 235–242Google Scholar
  38. Luckenbach, M. W., Orth, R. J. (1992). Swimming velocities and behavior of blue crab (Callinectes sapidus Rathbun) megalopae in still and flowing water. Estuaries 15: 186–192Google Scholar
  39. Luettich, R. A., Kirby-Smith, W. W., Hunnings, W. (1983). PSWIMS, a profiling instrument system for remote physical and chemical measurement in shallow water. Estuaries 16: 190–197Google Scholar
  40. McConaugha, J. R. (1988). Export and reinvasion of larvae as regulators of estuarine decapod populations. Am. Fish. Soc. Symp. 3: 90–103Google Scholar
  41. Mense, D. J., Wenner, E. L. (1989). Distribution and abundance of early life history stages of the blue crab Callinectes sapidus, in tidal marsh creeks near Charleston, South Carolina. Estuaries 12: 157–168Google Scholar
  42. Montfrans, J., van, Peery, C. A., Orth, R. J. (1990). Daily, monthly and annual settlement patterns by Callinectes sapidus and Neopanope sayi megalopae on artificial collectors deployed in the York River, Virginia. Bull. mar. Sci. 46: 214–229Google Scholar
  43. Naylor, E., Isaac, M. J. (1973). Behavioral significance of pressure responses in megalopa larvae of Callinectes sapidus and Macropipus sp. Mar. Behav. Physiol. 1: 341–350Google Scholar
  44. NOAA (1992). Tide tables, 1992. United States National Oceanic and Atmospheric Administration. Rockville, MarylandGoogle Scholar
  45. Pape, E. H., III, Garvine, R. W. (1982). The subtidal circulation in Delaware Bay and adjacent shelf waters. J. geophys. Res. 87: 7955–7970Google Scholar
  46. Provenzano, A. J., McConaugha, J. R., Phillips, K. B., Johnson, D. F., Clark, J. (1983). Vertical distribution of first stage larvae of the blue crab, Callinectes sapidus, at the mouth of the Chesapeake Bay. Estuar., cstl Shelf Sci. 16: 489–499Google Scholar
  47. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225Google Scholar
  48. Sandifer, P. A. (1975). The role of pelagic larvae in recruitment of populations of adult decapod crustaceans in the York River estuary and adjacent lower Chesapeake Bay, Virginia. Estuar., cstl Shelf Sci. 3: 269–279Google Scholar
  49. Sulkin, S. D. (1984). Behavioral basis of depth regulation in larvae of brachyuran crabs. Mar. Ecol. Prog. Ser. 15: 181–205Google Scholar
  50. Sulkin, S. D., Van Heukelem, W. (1982). Larval recruitment in the crab Callinectes sapidus Rathbun: an amendment to the concept of larval retention in estuaries. In: Kennedy, V. S. (ed.). Estuarine comparisons. Academic Press, New York, p. 459–475Google Scholar
  51. Sulkin, S. D., Van Heukelem, W., Kelly, P. (1983). Behavioral basis of depth regulation in hatching and post-larval stages of the mud crab Eurypanopeus depressus. Mar. Ecol. Prog. Ser. 11: 157–164Google Scholar
  52. Tankersely, R. A., Forward, R. B., Jr. (1994). Endogenous swimming rhythms in estuarine crab megalopae: implications for flood-tide transport. Mar. Biol. 118: 415–423Google Scholar
  53. Wheeler, D. E. (1978). Semilunar hatching periodicity in the mud fiddler crab Uca pugnax (Smith). Estuaries 1: 268–269Google Scholar
  54. Wilkinson, L. (1990) SYSTAT: the system for statistics. SYSTAT, Inc. Evanston, IllinoisGoogle Scholar
  55. Williams, A. B. (1984). Shrimps, lobsters and crabs of the Atlantic coast of the Eastern United States. Smithsonian Institution Press, Washington, D. C.Google Scholar
  56. Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. C. DeVries
    • 1
  • R. A. Tankersley
    • 1
  • R. B. ForwardJr.
    • 1
  • W. W. Kirby-Smith
    • 1
  • R. A. LuettichJr.
    • 2
  1. 1.Duke University Marine LaboratoryBeaufortUSA
  2. 2.Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityUSA

Personalised recommendations