Wood Science and Technology

, Volume 2, Issue 4, pp 268–278 | Cite as

The anisotropic elasticity of the plant cell wall

  • I. D. Cave
Article

Summary

The plant cell wall is treated as a two phase fibre composite material in which the fibres are dispersed, in an isotropic matrix, in the plane of the cell wall with an angular distribution f(θ). If f (θ) can be represented by a gaussian it is shown that the elastic stiffness constants of the cell wall can be easily evaluated. The theory is applied to a model of the earlywood of Pinus radiata and the theoretical variation of the longitudinal Young's Modulus with mean fibrilar direction is compared with that determined experimentally.

Zusammenfassung

Die pflanzliche Zellwand wird im allgemeinen behandelt wie ein im wesentlichen aus zwei Phasen bestehendes Fasermaterial, bei dem die Fasern in einer isotropen Matrixsubstanz gelöst und in der Zellwandebene mit einem Winkel f(θ) verteilt sind. Sofern f(θ) normal verteilt ist, können die elastischen Konstanten der Zellwand verhältnismäßig einfach berechnet werden. Diese Theorie wird auf das Modell von Kiefern-Frühholz (Pinus radiata) angewendet, und die theoretisch ermittelte Änderung des longitudinalen Youngs Moduls mit der mittleren Faserrichtung wird mit experimentell bestimmten Werten verglichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, N. F., and B. A.Meylan: The Anisotropic Shrinkage of Wood. Holzforschung Vol. 18 (1964) p. 146/156.Google Scholar
  2. Cave, I. D.: Theory of X-ray Measurement of Microfibril Angle in Wood. For. Prod. J. Vol. 16 (1966) p. 37/42.Google Scholar
  3. Cowdrey, D. R., and R. D. Preston: Elasticity and Microfibrillar Angle in the Wood of Sitka spruce. Proc. Roy. Soc. B. Vol. 166 (1966) p. 245/272.Google Scholar
  4. Hill, R.: Theory of Mechanical Properties of Fibre Strengthened Materials — III. Self Consistent Model. J. Mech. Phys. Solids Vol. 13 (1965) p. 189/198.Google Scholar
  5. Lekhnitskii, S. G.: Theory of Elasticity of an Anisotropic Elastic Body. San Francisco 1963: Holden Day Inc.Google Scholar
  6. Love, A. E. H.: Mathematical Theory of Elasticity. New York 1944: Dover Publications.Google Scholar
  7. Mark, R. E. in: W. A. Côté, Jr. (Ed.): Cellular Ultrastructure of Woody Plants. Syracuse 1965: Syracuse Univ. Press.Google Scholar
  8. —: Cell Wall Mechanics of Tracheids. New Haven and London 1967: Yale Univ. Press.Google Scholar
  9. Probine, M. C.: Spiral Growth and Cell Wall Structure of Nitella opaca. J. Expt. Bot. Vol. 14 (1963) p. 101/113.Google Scholar
  10. —, and N. F. Barber: The Structure and Plastic Properties of the Cell Wall of Nitella in relation to Extension Growth. Aust. J. Biol. Sci. Vol. 19 (1966) p. 439/457.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • I. D. Cave
    • 1
  1. 1.Physics and Engineering LaboratoryDepartment of Scientific and Industrial ResearchLower HuttNew Zealand

Personalised recommendations