Computational Mechanics

, Volume 15, Issue 6, pp 572–593 | Cite as

On the derivation and possibilities of the secant stiffness matrix for non linear finite element analysis

  • E. Oñate


In this paper the general non symmetric parametric form of the incremental secant stiffness matrix for non linear analysis of solids using the finite element metod is derived. A convenient symmetric expression for a particular value of the parameters is obtained. The geometrically non linear formulation is based on a Generalized Lagrangian approach. Detailed expressions of all the relevant matrices involved in the analysis of 3D solids are obtained. The possibilities of application of the secant stiffness matrix for non linear structural problems including stability, bifurcation and limit load analysis are also discussed. Examples of application are given for the non linear analysis of pin joined frames.


Information Theory Finite Element Analysis Linear Formulation Stiffness Matrix Parametric Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badawi, M.; Cusens, A. R. 1992: Symmetry of the stiffness matrices for geometrically non linear analysis, Communications in Appl. Num. Meth., 8: 135–140Google Scholar
  2. Bathe, K. J.; Ramm, E.; Wilson, E. L. 1975: Inestability analysis of free form shells by finite elements. Int. J. Num. Meth. Engng., 9(2): 353–386Google Scholar
  3. Bathe, K. J. 1982: Finite element procedures in non linear analysis. Prentice Hall.Google Scholar
  4. Carrera, E. 1992: Sull'uso dell'operatore secant in analisi non lineare distrutture multistrato con il methodo degli elementi finiti in ATTI, XI Congresso Nazionale AIMETA, Trento, 28 Sept–2 OctGoogle Scholar
  5. Duddeck, H.; Kroplin, B.; Dinkler, D.; Hillmann, J.; Wagenhuber, W. 1989: Non linear computations in Civil Engineering Structures (in German), DFG Colloquium, 2–3 March 1989, Springer-Verlag, BerlinGoogle Scholar
  6. Felippa, C. 1974: Discussions on the paper by Rajasekaran and Murray (1973). J. Struct. Div., ASCE, 100: 2521–2523Google Scholar
  7. Felippa, C.; Crivelli, L. A. 1991: The core congruential formulation of geometrically non linear finite elements. in Non Linear Computational Mechanics. The State of the Art, P.Wriggers and W.Wagner (eds.), Springer-Verlag, BerlinGoogle Scholar
  8. Felippa, C.; Crivelli, L. A.; Haugen, B. 1994: A survey of the core-congruental formulation for geometrically non linear TL finite element. Archives of Comp. Meth. in Eng. 1(1): 1–48Google Scholar
  9. Frey, F. 1978: L'analyse statique non lineaire des structures per le methode des elements finis et son application à la construction matallique. Ph.D. thesis, Univ. of LiegeGoogle Scholar
  10. Frey, F.; Cescotto, S. 1978: Some new aspects of the incremental total lagrangian description in non linear analysis in “Finite Element in non linear Mehanics”, edited by P. Bergan et al., Tapir Publishers, Univ. of TrøndheimGoogle Scholar
  11. Geradin, M.; Idelsohn, S.; Hodge, M. 1981: Computational strategies for the solution of large non-linear problems via quasi-Newton methods, Comp. Struct., 13: 73–81Google Scholar
  12. Horrigmoe, G. 1970: Non linear finite element models in solid mechanics. Report 76-2, Norwegian Inst. Tech., Univ TrøndheimGoogle Scholar
  13. Kroplin, B.; Dinkler, D.; Hillmann, J. 1985: An energy perturbation method applied to non linear structural analysis, Comp. Meth. Appl. Mech. Engng. 52: 885–897Google Scholar
  14. Kroplin, B.; Dinkler, D. 1988: A material law for coupled load yielding and geometric inestability, Engineering Comput. Vol. 5Google Scholar
  15. Kroplin, B.; Dinkler, D. 1990: Some thoughts on consistent tangent operators in plasticity, in Computatinal Plasticity D. R. J. Owen, E. Hinton and E. Oñate (eds.), Pineridge Press/CIMNEGoogle Scholar
  16. Kroplin, B.; Wilhelm, M.; Herrmann, M. 1991: Unstable phenomena in sheet metal forming processes and their simulation, VDI. Berichte NR. 894: 137–52Google Scholar
  17. Kroplin, B. 1992: Instability prediction by energy perturbation, in Numerical Methods in Applied Sciences and Engineering, H.Alder, J. C.Heinrich, S.Lavanchy, E.Oñate and B.Suarez (eds.) CIMNE, BarcelonaGoogle Scholar
  18. Larsen, P. K. 1971: Large displacement analysis of shells of revolution including creep, plasticity and viscoplasticity, report UC SEEm 71-22, Univ. of California BerkeleyGoogle Scholar
  19. Mallet, R.; Marcal, P. 1968: Finite element analysis of non linear structures, J. Struct. Div., ASCE, 14: 2081–2105Google Scholar
  20. Malvern, L. E. 1969: Introduction to the mechanics of a continuum medium, Prentice HallGoogle Scholar
  21. Mondkar, D. P.; Powell, G. H. 1977: Finite element analysis of non linear static and dynamic response, Int. J. Num. Meth. Engng., 11(2): 499–520Google Scholar
  22. Oñate, E.; Oliver, J.; Miquel, J.; Suárez, B. 1986: Finite element formulation for geometrically non linear problems using a secant matrix, in Computational Plasticity' 86, S. Atluri and G. Yagawa (eds.), Springer-VerlagGoogle Scholar
  23. Oñate, E. 1991: Possibilities of the secant stiffness matrix for non linear finite element analysis, in Non linear Engineering Computation, N. Bicanic et al. (eds), Pineridge PressGoogle Scholar
  24. Oñate, E. 1994: Derivation of the secant stiffness matrix for non linear finite element analysis of solids and trusses, Research Report No 49, CIMNE, BarcelonaGoogle Scholar
  25. Oñate, E. and Matias, W. T. 1995: A critical displacement approach for structural instability analysis, Research Report No-60, CIMNE, BarcelonaGoogle Scholar
  26. Pignataro, M.; Rizzi, N.; Luongo, A. 1991: Stability, Bifurcation and Postcritical Behaviour of Structures, ElsevierGoogle Scholar
  27. Rajasekaran, S.; Murray, D. W. 1973: On incremental finite element matrices, J. Struct. Div., ASCE, 99: 7423–7438Google Scholar
  28. Wood, R. D.; Schrefler, B. 1978: Geometrically non linear analysis-A correlation of finite element notations, Int. J. Num. Meth. Engng., 12: 635–642Google Scholar
  29. Yaghmai, S. 1968: Incremental analysis of large deformations in mechanics of solids with applications to axisymmetric shells of revolution, Report No-SESM 68-17, Univ. of California, BerkeleyGoogle Scholar
  30. Zienkiewicz, O. C.; Taylor, R. L. 1989: The finite element method, Vol. I, McGraw-HillGoogle Scholar
  31. Zienkiewicz, O. C.; Taylor, R. L. 1991: The finite element method, Vol. II, McGraw-HillGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • E. Oñate
    • 1
  1. 1.E. T. S. Ingenieros de Caminos, Canales y PuertosUniversidad Politécnica de CataluñaBarcelonaSpain

Personalised recommendations