Advertisement

Marine Biology

, Volume 119, Issue 1, pp 1–11 | Cite as

A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue

  • M. D. Unson
  • N. D. Holland
  • D. J. Faulkner
Article

Abstract

The dictyoceratid marine sponge Dysidea herbacea (Keller, 1889) is common in shallow waters of the tropical Pacific Ocean. Polybrominated biphenyl ethers such as 2-(2′,4′-dibromophenyl)-4,6-dibromophenol (1) are characteristic secondary metabolites of some specimens of this sponge and may represent as much as 12% of the dry weight. We have found 1 to be deposited as conspicuous crystals throughout the sponge tissue. The dominant prokaryotic endosymbiont in the mesohyl of the sponge is a filamentous cyanobacterium (Oscillatoria spongeliae), although a vacuole-containing, heterotrophic bacterium is also present. The cyanobacteria were separated from the sponge cells and heterotrophic bacteria by flow cytometry. Coupled gas chromatography—mass spectrometry and proton nuclear magnetic-resonance spectroscopy revealed that the major brominated Compound 1 isolated from the intact symbiotic association is found in the cyanobacteria and not in the sponge cells or heterotrophic bacteria. This suggests that the production of the compound is due to the cyanobacterium, and not to the sponge or symbiotic heterotrophic bacteria, as had been suggested earlier.

Keywords

Sponge Heterotrophic Bacterium Marine Sponge Oscillatoria Filamentous Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature, Lond 351:161–164Google Scholar
  2. Ashworth RB, Cormier MJ (1967) Isolation of 2,6-dibromophenol from the marine hemichordate Balanoglossus biminiensis. Science, NY 155:1558–1559Google Scholar
  3. Bergquist PR (1965) The sponges of Micronesia. Part I. The Palau archipelago. Pacif Sci 19:123–204Google Scholar
  4. Bergquist PR (1980) A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida, and Verongida (class Demospongiae). NZ J Zool 7:443–503Google Scholar
  5. Bergquist PR, Wells RJ (1983) Chemotaxonomy of the Porifera: the development and current status of the field: In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives. Vol V. Academic Press, New York, p 1–50Google Scholar
  6. Berthold RJ, Borowitzka MA, Mackay MA (1982) The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327–335Google Scholar
  7. Braekman JC, Daloze D, Deneubourg F, Lippert E, Van Sande J (1990) Les métabolites hexachlorés de Dysidea herbacea: dérivés modèles pour la synthèse d'inhibiteurs spécifiques du transport de l'iodide dans les cellules de la glande thyroïde. New J Chem 14:705–711Google Scholar
  8. Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Structural studies of halogenated diphenyl ethers from a marine sponge. J chem Soc Perkin Trans (I: Org bio-org Chem) 2464–2467Google Scholar
  9. Cardellina JH, II, Marner F-J, Moore RE (1979) Malyngamide A, a novel chlorinated metabolite of the marine cyanophyte Lyngbya majuscula. J Am chem Soc 101:240–242Google Scholar
  10. Carmely S, Cojocaru M, Loya Y, Kashman Y (1988) Ten new rearranged spongian diterpenes from two Dysidea species. J org Chem 53:4801–4807Google Scholar
  11. Carté B, Faulkner DJ (1981) Polybrominated diphenyl ethers from Dysidea herbacea, Dysidea chlorea, and Phyllospongia foliascens. Tetrahedron 37:2335–2339Google Scholar
  12. Charles C, Brackman JC, Daloze D, Tursch B, Declercq JP, Germain G, Van Meerssche M (1978a) Chemical studies of marine invertebrates. XXXIV. Herbadysidolide and herbasolide, two unusual sesquiterpenoids from the sponge Dysidea herbacea. Bull Soc chim Belg 87:481–486Google Scholar
  13. Charles C, Braekman JC, Daloze D, Tursch B, Karlsson R (1978b) Chemical studies of marine invertebrates. XXXII. Isodysidenin, a further hexachlorinated metabolite from the sponge Dysidea herbacea. Tetrahedron Lett 1519–1520Google Scholar
  14. Dunlop RW, Kazlauskas R, March G, Murphy PT, Wells RJ (1982) New furano-sesquiterpenes from the sponge Dysidea herbacea. Aust J Chem 35:95–103Google Scholar
  15. Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers form a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632–633Google Scholar
  16. Faulkner DJ (1984) Marine natural products: metabolites of marine invertebrates. Nat Product Rep 1:551–598Google Scholar
  17. Faulkner DJ (1986) Marine natural products. Nat Product Rep 3: 1–33Google Scholar
  18. Faulkner DJ (1986) Marine natural products. Nat Product Rep 4: 539–576Google Scholar
  19. Faulkner DJ (1988) Marine natural products. Nat Product Rep 5: 613–663Google Scholar
  20. Faulkner DJ (1990) Marine natural products. Nat Product Rep 7: 269–309Google Scholar
  21. Faulkner DJ (1990) Marine natural products. Nat Product Rep 9: 323–364Google Scholar
  22. Feldmann J (1933) Sur quelques cyanophycées vivant dans le tissu des éponges de Banyuls. Archs Zool exp gén 75:381–404Google Scholar
  23. Fusetani N, Sugano M, Matsunaga S, Hashimoto K, Shikama H, Ohta A, Nagano H (1987) Isolation of a hexaprenylhydroquinone sulfate from the marine sponge Dysidea sp. as an H,K-ATPase inhibitor. Experientia 43:1233–1234Google Scholar
  24. Hauck F (1879) Beiträge zur Kenntniss der adriatischen Algen. Öst bot Z 29:243–245Google Scholar
  25. Higa T, Sakemi S-I (1983) Environmental studies on natural halogen compounds. I. Estimation of biomass of the acorn worm Ptychodera flava Eschscholtz (Hemichordata: Enteropneusta) and excretion rate of metabolites at Kattore Bay, Kohama, Island, Okinawa. J chem Ecol 9:495–501Google Scholar
  26. Hirsch S, Rudi A, Kashman Y (1991) New avarone and avarol derivatives from the marine sponge Dysidea cinerea. J nat Products 54:92–97Google Scholar
  27. Hofheinz W, Oberhänsli WE (1977) Dysidin, ein neuartiger, chlorhaltiger Naturstoff aus dem Schwamm Dysidea herbacea. Helv chim Acta 60:660–669Google Scholar
  28. Kashman Y, Zviely M (1980) Furospongolide, a new C21 furanoterpene from a marine organism. Experientia 36:1279–1280Google Scholar
  29. Kazlauskas R, Lidgard RO, Wells RJ (1977) A novel hexachlorometabolite from the sponge Dysidea herbacea. Tetrahedron Lett 3183–3186Google Scholar
  30. Kazlauskas R, Murphy PT, Wells RJ (1978a) A diketopiperazine derived from trichloroleucine from the sponge Dysidea herbacea. Tetrahedron Lett 4945–4948Google Scholar
  31. Kazlauskas R, Murphy PT, Wells RJ (1978b) A new sesquiterpene from the sponge Dysidea herbacea. Tetrahedron Lett 4949–4950Google Scholar
  32. Keller C (1889) Die Spongienfauna des Rothen Meeres. Z wiss Zool 48:311–405Google Scholar
  33. Larkum AWD, Cox GC, Hiller RG, Parry DL, Dibbayawan TP (1987) Filamentous cyanophytes containing phycourobilin and in symbiosis with sponges and an ascidian of coral reefs. Mar Biol 95: 1–13Google Scholar
  34. Mancini I, Guella G, Guerriero A, Boldrin A, Pietra F (1987) Adriadysiolide, the first monoterpenoid isolated from a marine sponge. Helv chim Acta 70:2011–2018Google Scholar
  35. Minale L (1978) Terpenoids from marine sponges. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives. Vol. I. Academic Press, New York, p 175–240Google Scholar
  36. Minale L, Riccio R, Sodano G (1974) Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Disidea [sic] avara. Tetrahedron Lett 3401–3404Google Scholar
  37. Norton RS, Croft KD, Wells RJ (1981) Polybrominated oxydiphenol derivatives from the sponge Dysidea herbacea. Structure determination by analysis of 13C spin-lattice relaxation data for quaternary carbons and 13C−1H coupling constants. Tetrahedron 37:2341–2349Google Scholar
  38. Salvá J, Faulkner DJ (1990) A new brominated diphenyl ether from a Philippine Dysidea species. J nat Products 53:757–760Google Scholar
  39. Santavy DL (1985) The symbiotic relationship between a blue-pigmented bacterium and the coral reef sponge, Terpios granulosa. Proc 5th int coral Reef Congr 5:135–140 [Gabrié C et al (eds) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  40. Santavy DL (1988) Marine bacteria-invertebrate symbiosis: the Caribbean sclerosponge Ceratoporella nicholsoni as a paradigm. Doctoral dissertation. University of Maryland, College Park, MarylandGoogle Scholar
  41. Schmidt S, Wittich R-M, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl envirl Microbiol 58:2744–2750Google Scholar
  42. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bact 173:4371–4378Google Scholar
  43. Schulze FE (1879) Untersuchungen über den Bau und die Entwicklung der Spongien. Sechste Mittheilung. Die Gattung Spongelia. Z wiss Zool 32:117–157Google Scholar
  44. Sharma GM, Vig B (1972) Studies on the antimicrobial substances of sponges. VI. Structures of two antibacterial substances isolated from the marine sponge Dysidea herbacea. Tetrahedron Lett 1715–1718Google Scholar
  45. Stierle AC, Cardellina JH, II, Singleton FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021–1022Google Scholar
  46. Unson MD, Faulkner DJ (1993) Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49:349–353Google Scholar
  47. Utkina NK, Kazantseva MV, Denisenko VA (1987) Brominated diphenyl ethers from the marine sponge Dysidea fragilis. [In Russ] Khimiya prior soed 4:603–605Google Scholar
  48. Vacelet J (1975) Étude en microscopie électronique de l'association entre bactéries et spongiaires du genre Veronigia (Dictyoceratida). J Microscopie Biol cell 23:271–288Google Scholar
  49. Vacelet J (1981) Algal-sponge symbioses in the coral reefs of New Caledonia: a morphological study. Proc 4th int coral Reef Symp 2:713–719 [Gomez ED, et al (eds) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]Google Scholar
  50. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J exp mar Biol Ecol 30:301–314Google Scholar
  51. Voinov VG, El'kin YN, Kuznetsova TA, Mal'tsev II, Mikhailov VV, Sasunkevich VA (1991) Use of mass spectroscopy for the detection and identification of bromine-containing diphenyl ethers. J Chromat 586:360–362Google Scholar
  52. Walker RP, Faulkner DJ (1981) Diterpenes from the sponge Dysidea amblia. J org Chem 46:1098–1102Google Scholar
  53. Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology, and microbial populations of coral reef sponges. Mar Biol 49:161–167Google Scholar
  54. Wilkinson CR (1978b) Microbial association in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176Google Scholar
  55. Wilkinson CR (1992) Symbiotic interactions between marine sponges and algae. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress Ltd, Bristol, p 111–151Google Scholar
  56. Wilkinson CR, Garrone R (1980) Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon. In: Smith DC, Tiffon Y (eds) Nutrition in the lower metazoa. Pergamon Press, Oxford, p 157–161Google Scholar
  57. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. D. Unson
    • 1
  • N. D. Holland
    • 1
  • D. J. Faulkner
    • 1
  1. 1.Scripps Institution of OceanographyUniversity of CaliforniaLa JollaUSA

Personalised recommendations