Marine Biology

, Volume 116, Issue 3, pp 477–487 | Cite as

Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay

  • K. R. Bockstahler
  • D. W. Coats
Article

Abstract

In situ grazing rates for the mixotrophic dinoflagellate Gymnodinium sanguineum Hirasaka feeding on nanociliate populations of Chesapeake Bay were determined in June and October of 1990 using a “gut clearance/gut fullness” approach. Recently ingested prey were digested beyond the point of recognition at a rate of ∼23% h-1. Estimates of in situ ingestion and clearance ranged from 0 to 0.06 prey dinoflagellate-1 h-1 and 0 to 5.8 μl dinoflagellate-1 h-1, respectively, with daily removal of ciliate biomass representing 6 to 67% of the ≤20-μm oligotrich standing stock. Daily consumption of ciliate biomass by G. sanguineum averaged 2.5% of body carbon and 4.0% of body nitrogen with maximal values of 11.6 and 18.5%, respectively. Ingestion of ciliates may help balance nitrogen requirements for G. sanguineum and give this species an advantage over purely photosynthetic dinoflagellates in nitrogen limited environments. By preying on ciliates, these dinoflagellates reverse the normal flow of material from primary producer to consumer and thereby influence trophodynamics of the microbial food web in Chesapeake Bay.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Banse, K. (1982). Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27: 1059–1071Google Scholar
  2. Bennett, J. P., Woodward, J. W., Shultz, D. J. (1986). Effect of discharge on the chlorophyll α distribution in the tidally-influenced Potomac River. Estuaries 9: 250–260Google Scholar
  3. Bennett, S. J., Sanders, R. W., Porter, K. G. (1990). Heterotrophic, autotrophic, and mixotrophic nanoflagellates: seasonal abundances and bacterivory in a eutrophic lake. Limnol. Oceanogr. 35: 1821–1832Google Scholar
  4. Biecheler, B. (1952). Recherches sur les Peridiniens. Bull. biol. Fr. Belg. (Suppl.) 36: 1–149Google Scholar
  5. Bird, D. F., Kalff, J. (1986). Bacterial grazing by planktonic lake algae. Science, N. Y. 231: 493–495Google Scholar
  6. Bird, D. F., Kalff, J. (1987). Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284Google Scholar
  7. Bird, D. F., Kalff, J. (1989). Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 34: 155–162Google Scholar
  8. Bjørnsen, P. K., Kuparinen, J. (1991). Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments. Mar. Biol. 109: 397–405Google Scholar
  9. Bockstahler, K. R., Coats, D. W. (1993). Spatial and temporal aspects of mixotrophy in Chesapeake By dinoflagellates. J. eukaryotic Microbiol. 40: 49–60Google Scholar
  10. Cachon, M., Cachon, J., Cosson, J., Greuet, C., Huitorel, P. (1991). Dinoflagellate flagella adopt various conformations in response to different needs. Biol. cell 71: 175–182Google Scholar
  11. Capriulo, G. M., Degnan, C. (1991). Effect of food concentration on digestion and vacuole passage time in the heterotrichous ciliate Fabrea salina. Mar. Biol 110: 199–202Google Scholar
  12. Caron, D. A., Porter, K. G., Sanders, R. W. (1990). Carbon, nitrogen, and phosphorus budgets for the mixotrophic phytoflagellate Proterioochromonas malhamensis (Chrysophyceae) during bacterial ingestion. Limnol. Oceanogr. 35: 433–443Google Scholar
  13. Coats, D. W., Heinbokel, J. F. (1982). A study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Mar. Biol. 67: 71–79Google Scholar
  14. Cullen, J. J., Horrigan, S. G. (1981). Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol. 62: 81–89Google Scholar
  15. Dagg, M. J., Walser, E. W., Jr. (1987). Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subarctic Pacific Ocean. Limnol. Oceanogr. 32: 178–188Google Scholar
  16. D'Elia, C. F., Sanders, J. G., Boynton, W. R., Jr. (1986). Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large-scale, continuous culture. Can. J. Fish. aquat. Sciences 43: 397–406Google Scholar
  17. Doddema, H., van der Veer, J. (1983). Ochromonas monicis sp. nov., a particle feeder with bacterial endosymbionts. Cryptogamie, Algologie 4: 89–97Google Scholar
  18. Dodson, A. N., Thomas, W. H. (1964). Concentrating plankton in a gentle fashion. Limnol. Oceanogr. 9: 455–456Google Scholar
  19. Dolan, J. R., Coats, D. W. (1991). Preliminary prey digestion in a predacious estuarine ciliate, Euplotes woodruffi, and the use of digestion data to estimate ingestion. Limnol. Oceanogr. 36: 558–565Google Scholar
  20. Dortch, Q., Maske, H. (1982). Dark uptake of nitrate reductase activity of a red-tide population off Peru. Mar. Ecol. Prog. Ser. 9: 299–303Google Scholar
  21. Doucette, G. J., Harrison, P. J. (1991). Aspects of iron and nitrogen nutrition in the red tide dinoflagellate Gymnodinium sanguineum. Mar. Biol. 110: 165–173Google Scholar
  22. Estep, K. W., Davis, P. G., Keller, M. D., Sieburth, J. M. (1986). How important are oceanic algal nanoflagellates in bacterivory? Limnol. Oceanogr. 31: 646–650Google Scholar
  23. Fenchel, T. (1975). The quantitative importance of benthic microfauna of an arctic tundra pond. Hydrobiologia 46: 445–464Google Scholar
  24. Fenchel, T. (1987). Ecology of Protozoa, the biology of free-living phagotrophic protists. Springer-Verlag, BerlinGoogle Scholar
  25. Fiedler, P. C. (1982). Zooplankton avoidance and reduced grazing responses to Gymnodinium splendens (Dinophyceae). Limnol. Oceanogr. 27: 961–965Google Scholar
  26. Fisher, T. R., Peele, E. R., Ammerman, J. W., Harding, L. W., Jr. (1992). Nutrient limitation of phytoplankton in Chesapeake Bay. Mar. Ecol. Prog. Ser. 82: 51–63Google Scholar
  27. Gallegos, C. L., Jordan, T. E., Correll, D. L. (1992). Event-scale response of phytoplankton to watershed inputs in a subestuary: timing, magnitude, and location of phytoplankton blooms. Limnol. Ocenaogr. 37: 813–828Google Scholar
  28. Gaines, G. (1988). Feeding and reproduction of heterotrophic dinoflagellates. (Abstr). In: Burkill, P. H., Reid, P. C. (eds.) Protozoa and their role in marine processes. NATO Advanced Study Institute, Plymouth Marine Laboratory and Plymouth Polytechnic, Plymouth, p. 38–39Google Scholar
  29. Gaines, G., Elbrächter, M. (1987). Heterotrophic nutrition. In: Taylor, F. J. R. (ed.) The biology of dinoflagellates. Blackwell Scientific Publishers, Oxford, p. 224–268Google Scholar
  30. Goldman, J. C., Dennett, M. R., Gordin, H. (1989). Dynamics of herbivorous grazing by the heterotrophic dinoflagellate Oxyrrhis marina. J. Plankton Res. 11: 391–407Google Scholar
  31. Goulder, R. (1972). Grazing by the ciliated protozoon Loxodes magnus on the alga Scenedesmus in a eutrophic pond. Oikos 23: 109–115Google Scholar
  32. Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73: 253–261Google Scholar
  33. Hansen, P. J. (1992). Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114: 327–334Google Scholar
  34. Harding, L. W., Jr., Meeson, B. W., Fisher, T. R., Jr. (1986). Phytoplankton production in two east coast estuaries: photosynthesis-light function and pattern of carbon assimilation in Chesapeake and Delaware Bays. Estuar. estl Shelf Sci. 234: 773–806Google Scholar
  35. Harrison, W. G. (1976). Nitrate metabolism of the red tide dinoflagellate Gonyaulax polyedra Stein. J. exp. mar. Biol. Ecol. 21: 199–209Google Scholar
  36. Heaney, S. I., Eppley, R. W. (1981). Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. J. Plankton Res. 3: 331–344Google Scholar
  37. Jacobson, D. M. (1988). Growth and feeding rates of Protoperidinium. (Abstr). In: Burkill, P. H., Reid, P. C. (eds.) Protozoa and their role in marine processes. NATO Advanced Study Institute, Plymouth Marine Laboratory and Plymouth Polytechnic, Plymouth, p. 60Google Scholar
  38. Jerome, C. A., Montagnes, D. J. S., Taylor, F. J. R. (1993). The effect of quantitative Protargol staining (QPS) and Lugol's and Bouin's fixatives on cell size: a more accurate estimate of ciliate species biomass. J. eukaryotic Microbiol. 40: (in press)Google Scholar
  39. Kopylov, A. I., Tumantseva, N. I. (1987). Analysis of the contents of tintinnid food vacuoles and evaluation of their contribution to the consumption of phytoplankton production off the Peru coast. Oceanology 27: 343–347Google Scholar
  40. Lessard, E. J., Swift, E. (1985). Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique. Mar. Biol. 87: 289–296Google Scholar
  41. Lessard, E. J. (1991). The trophic role of heterotrophic dinoflagellates in diverse marine environments. Mar. microb. Fd Webs 5: 49–58Google Scholar
  42. Loftus, M. E., Subba Rao, D. V., Seliger, H. H. (1972). Growth and dissipation of phytoplankton in Chesapeake Bay. 1. Response to a large pulse of rainfall. Chesapeake Sci. 13: 282–299Google Scholar
  43. Malone, T. C., Crocker, L. H., Pike, S. E., Wendler, B. W. (1988). Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Mar. Ecol. Prog. Ser. 48: 235–249Google Scholar
  44. Montagnes, D. J. S., Lynn, D. H. (1987). A quantitative Protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Mar. microb. Fd Webs 2: 83–93Google Scholar
  45. Öpik, H., Flynn, K. J. (1989). The digestive process of the dinoflagellate Oxyrrhis marina Dujardin, feeding on the chlorophyte, Dunaliella primolecta Butcher: a combined study of ultrastructure and free amino acids. New Phytol. 113: 143–151Google Scholar
  46. Porter, K. G. (1988). Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97Google Scholar
  47. Putt, M., Stoecker, D. K. (1989). An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103Google Scholar
  48. Sanders, R. W. (1991). Mixotrophic protists in marine and freshwater ecosystems. J. Protozool. 38: 76–81Google Scholar
  49. Sanders, R. W., Porter, K. G. (1988). Phagotrophic phytoflagellates. Adv. microb. Ecol. 10: 167–192Google Scholar
  50. Sanders, R. W., Porter, K. G., Bennett, S. J., DeBiase, A. E. (1989). Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater plankton community. Limnol. Oceanogr. 34: 673–687Google Scholar
  51. Sanders, R. W., Porter, K. G., Caron, D. A. (1990). Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Proterioochromonas malhamensis. Microb. Ecol. 19: 97–109Google Scholar
  52. Sellner, K. G., Lacouture, R. V., Cibik, S. J., Brindley, A., Brownlee, S. G. (1991). Importance of a winter dinoflagellate-microflagellate bloom in the Patuxent River Estuary. Estuar. cstl Shelf. Sci. 32: 27–42Google Scholar
  53. Sellner, K. G., Brownlee, D. C. (1990). Dinoflagellate-microzooplankton interactions in Chesapeake Bay. In: Graneli, E., Sondstrom, B., Edler, L., Anderson, D. M. (eds.) Toxic marine phytoplankton. Elsevier, New York, p. 221–226Google Scholar
  54. Sellner, K. G., Kachur, M. E. (1987). Phytoplankton: relationships between phytoplankton, nutrients, oxygen flux and secondary producers. In: Heck, K. L., Jr. (ed.) Ecological studies in the middle reach of Chesapeake Bay: Calvert Cliffs. Springer-Verlag, Berlin, p. 11–37Google Scholar
  55. Sellner, K. G., Olson, M. M. (1985). Copepod grazing in red tides of Chesapeake Bay. In: Anderson, A. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier Sci. Pub. Co., Inc., New York, p. 245–250Google Scholar
  56. Sokal, R. R., Rohlf, F. J. (1981). Biometry, 2nd edn. W. H. Freeman & Co., New YorkGoogle Scholar
  57. Stoecker, D. K., Silver, M. W., Michaels, A. E., Davis, L. H. (1988). Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar. Biol. 99: 415–423Google Scholar
  58. Strom, S. L. (1991). Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean. Mar. Ecol. Prog. Ser. 78: 103–113Google Scholar
  59. Thomas, W. H., Dodson, A. N. (1974). Effects of interactions between temperature and nitrate supply on the cell-division rates of two marine phytoflagellates. Mar. Biol. 24: 213–217Google Scholar
  60. Throndson, J. (1978). Preservation and storage. In: Sournia, A. (ed.) Phytoplankton manual. UNESCO, Paris, p. 69–74Google Scholar
  61. Verity, P. G., Stoecker, D. K., Sieracki, M. E., Burkill, P. H., Edwards, A. S., Tronzo, C. R. (1993). Abundance, biomass, and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. Deep-Sea Res. 40: 227–244Google Scholar
  62. Wang, R., Conover, J. R. (1986). Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates. Limnol. Oceanogr. 31: 867–877Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • K. R. Bockstahler
    • 1
  • D. W. Coats
    • 1
  1. 1.Smithsonian Environmental Research CenterEdgewaterUSA

Personalised recommendations