Journal of Materials Science

, Volume 30, Issue 13, pp 3407–3414 | Cite as

Influence of temperature and interelectrode distance on the negative differential resistance in metal-chalcogenide glassy semiconductors

  • M. Domínguez
  • E. Márquez
  • P. Villares
  • R. Jiménez-Garay


An investigation has been carried out, to elucidate some aspects of the current-controlled negative differential resistance (CCNDR) effect in bulk metal-chalcogenide glassy semiconductors. Because this phenomenon has been shown to be mainly of a thermal nature, a model, from the thermodynamic point of view, was developed, including some aspects related to the thermistors theory. The main conclusion from this model is the appearance of a current filament, which showed up when the material switched from the high electrical resistance to the low electrical resistance state, forming a crystalline filament between both electrodes. The variation of the CCNDR parameters with temperature and interelectrodic distance was studied, using both coplanar point electrodes and coplanar disc electrodes. The experimental results show a good agreement with the expected behaviour from the proposed thermal model (especially when natural convection was considered as the heat-exchanging process between the material and the ambient surrounding). In addition an algorithm was found to simulate the phenomenon computationally, using the experimentally determined physical parameters for the samples under study.


Natural Convection High Electrical Resistance Thermal Model Resistance State Disc Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. OVSHINSKY, Phys. Rev. Lett. 21 (1968) 1450.Google Scholar
  2. 2.
    E. MÁRQUEZ, R. JIMÉNEZ-GARAY, A. ZAKERY, P. J. S. EWEN and A. E. OWEN, Philos. Mag. B 63 (1991) 1169.Google Scholar
  3. 3.
    E. MÁRQUEZ, J. B. RAMÍREZ-MALO, J. FERNÁNDEZ-PEÑA, R. JIMÉNEZ-GARAY, P. J. S. EWEN and A. E. OWEN, Opt. Mater. 2 (1993) 143.Google Scholar
  4. 4.
    M. I. FRAZER, PhD thesis, University of Edinburgh (1982).Google Scholar
  5. 5.
    S. R. OVSHINSKY and H. FRITZSCHE, IEEE Trans. Electron Dev. ED-20 (1973) 91.Google Scholar
  6. 6.
    V. L. VANINOV and S. K. NOVOSELOV, Inorg. Mater. 13 (1977) 1573.Google Scholar
  7. 7.
    A. V. DANILOV and R. L. MYULLER, Zh. Prikl. Khim. 35 (1962) 2012.Google Scholar
  8. 8.
    D. ADLER, CRC Crit. Rev. Solid State Sci. 2 (1971) 317.Google Scholar
  9. 9.
    B. K. RIDLEY, Proc. Phys. Soc. 82 (1963) 954.Google Scholar
  10. 10.
    T. M. HAYES and D. D. THORNBURG, in “Proceedings of the 5th International Conference on Amorphous and Liquid Semiconductors” (Taylor and Francis, London, 1974) p. 889.Google Scholar
  11. 11.
    M. DOMÍNGUEZ, E. MÁRQUEZ, P. VILLARES and R. JIMÉNEZ-GARAY, Semicond. Sci. Technol. 3 (1988) 1106.Google Scholar
  12. 12.
    Idem, in “Proceedings of the 3rd International Workshop on Non-Crystalline Solids (World Scientific, Singapore, 1991) p. 437.Google Scholar
  13. 13.
    E. MÁRQUEZ, J. VÁZQUEZ, N. De La ROSA-FOX, P. VILLARES and R. JIMÉNEZ-GARAY, J. Mater. Sci. 23 (1988) 1399.Google Scholar
  14. 14.
    E. MÁRQUEZ, L. ESQUIVIAS, P. VILLARES and R. JIMÉNEZ-GARAY, Rev. Sci. Instrum. 56 (1985) 1262.Google Scholar
  15. 15.
    E. MÁRQUEZ, P. VILLARES and R. JIMÉNEZ-GARAY, Phys. Status. Solidi (a) 102 (1987) 741.Google Scholar
  16. 16.
    Idem, J. Non-Cryst. Solids 105 (1988) 123.Google Scholar
  17. 17.
    S. R. De GROOT, “Termodinámica de los procesos irreversibles” (Alhambra, Madrid, 1968).Google Scholar
  18. 18.
    H. K. ROCKSTAD and M. P. SHAW, IEEE Trans. Electron. Dev. ED-20 (1973) 593.Google Scholar
  19. 19.
    H. FRITZSCHE, IBM J. Res. Dev. 13 (1969) 515.Google Scholar
  20. 20.
    E. MÁRQUEZ, M. DOMÍNGUEZ, J. MARTÍNEZ, P. VILLARES and R. JIMÉNEZ-GARAY, Anal. Fis. B 86 (1990) 134.Google Scholar
  21. 21.
    R. W. SCARR and R. A. SETTERINGTON, in “Proceedings of IEE”, Paper 3176M (1960) p. 395.Google Scholar
  22. 22.
    O. J. M. SMITH, Rev. Sci. Instrum. 21 (1950) 344.Google Scholar
  23. 23.
    H. S. CARSLAW and J. C. JAEGER, “Conduction of heat in solids” (Oxford University Press, London, 1959).Google Scholar
  24. 24.
    J. C. JAEGER, Proc. Camb. Philos. Soc. 46 (1950) 634.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. Domínguez
    • 1
  • E. Márquez
    • 1
  • P. Villares
    • 1
  • R. Jiménez-Garay
    • 1
  1. 1.Departamento de Estructura y Propiedades de los Materiales, Facultad de CienciasUniversidad de CádizPuerto RealSpain

Personalised recommendations