Marine Biology

, Volume 115, Issue 3, pp 445–452 | Cite as

Flow rate and particle concentration within the house of the pelagic tunicate Oikopleura vanhoeffeni

  • C. C. Morris
  • D. Deibel
Article

Abstract

The food-concentrating filter within the house of Oikopleura vanhoeffeni Lohmann consists of three layers, upper and lower fine-mesh layers and an intermediate coarse-mesh layer. The filter is a natural analogue of man-made tangential, or cross-flow, filters that are used to concentrate fine particulate and colloidal material by the exclusion of water. Flow analysis using video microscopy of O. vanhoeffeni, collected in 1989 and 1990 at Logy Bay, insular Newfoundland, indicates concentration of particles of 74 to 1089 times that of ambient seawater (\(\bar x \pm {\text{SE}} = 328 \pm 48,n = 23\),n=23), for individuals 1.8 to 5.4 mm long. The smallest individuals had the highest concentration factors. Flow through the house is predominately affected by viscous forces and values of Reynolds numbers are ≈1. Flow rates through the house of O. vanhoeffeni indicate a maximum filtration capacity of ca. 1.4 to 26 liters d-1 and clearance rates (assuming ca. 50% of the time is spent not actively pumping) of 0.7 to 13 liters d-1, depending on body size. The estimated thickness of the boundary layer around individual fibers of the food-concentrating filter is 0.08 μm, which is less than the pore width. The estimated concentration factors suggest that colloidal and fine particulate material may aggregate into larger particles within the food-concentrating filter and food tube during feeding.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L. (1977). House morphology and mechanisms of feeding in the Oikopleuridae (Tunicata, Appendicularia). J. Zool., Lond. 181: 175–188Google Scholar
  2. Alldredge, A. L. (1981). The impact of appendicularian grazing on natural food concentrations in situ. Limnol. Oceanogr. 26: 247–257Google Scholar
  3. Barthel, K. G., Schneider, G., Gradinger R., Lenz, J. (1989). Concentration of live pico- and nanoplankton by means of tangential flow filtration. J. Plankton Res. 11: 1213–1221Google Scholar
  4. Deibel, D. (1986). Feeding mechanism and house of the appendicularian Oikopleura vanhoeffeni. Mar. Biol. 93: 429–436Google Scholar
  5. Deibel D. (1988). Filter feeding by Oikopleura vanhoeffeni: grazing impact on suspended particles in cold ocean waters. Mar. Biol. 99: 177–186Google Scholar
  6. Deibel D., Dickson M.-L., Powell, C. V. L. (1985). Ultrastructure of the mucous feeding filter of the house of the appendicularian Oikopleura vanhoeffeni. Mar. Ecol. Prog. Ser. 27: 79–86Google Scholar
  7. Deibel, D., Lee, S. H. (1992). Retention efficiency of sub-micrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoeffeni. Mar. Ecol. Prog. Ser. 81: 25–30Google Scholar
  8. Deibel, D., Powell, C. V. L. (1987). Ultrastructure of the pharyngeal filter of the appendicularian Oikopleura vanhoeffeni: implications for particle size selection and fluid mechanics. Mar. Ecol. Prog. Ser. 35: 243–250Google Scholar
  9. Ellington, C. P. (1975). Non-steady-state aerodynamics of the flight of Encorsia formosa. In: Brokaw, G. J., Breenen, C., Wu, T. Y. T. (eds.) Swimming and flying in nature. Plenum, New York, p. 783–786Google Scholar
  10. Flood, P. R. (1978). Filter characteristics of appendicularian food catching nets. Experimentia 34: 173–175Google Scholar
  11. Flood, P. R. (1991). Architecture of, and water circulation and flow rate in, the house of the planktonic tunicate Oikopleura labradoriensis. Mar. Biol. 111: 95–111Google Scholar
  12. Flood, P. R., Deibel, D., Morris, C. C. (1990). Visualization of the transparent gelatinous house of the pelagic tunicate Oikopleura vanhoeffeni using Sepia ink. Biol. Bull. mar. biol. Lab., Woods Hole 178: 118–125Google Scholar
  13. Flood, P. R., Deibel, D., Morris, C. C. (1992). Filtration of colloidal melanin from seawater by planktonic tunicates. Nature, Lond. 355: 630–632Google Scholar
  14. Harbison, G. R., McAlister, V. L. (1979). The filter-feeding rates and particle retention efficiencies of three species of Cyclosalpa (Tunicata, Thaliacea). Limnol. Oceanogr. 24: 875–892Google Scholar
  15. Jørgensen, C. B. (1984) Effect of grazing: metazoan suspension feeders. In: Hobbie, J. E., Williams, P. J. le B. (eds.) Heterotrophic activity in the sea. Plenum, New York, p. 445–464Google Scholar
  16. Knoechel, R., Steel-Flynn, D. (1989). Clearance rates of Oikopleura in cold coastal Newfoundland waters: a predictive model and its trophodynamic implications. Mar. Ecol. Prog. Ser. 53: 257–266Google Scholar
  17. Körner, W. F. (1952). Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol). Z. Morph. Ökol. Tiere 41: 1–53. (English translation available from Can. Inst. Sci. Tech. Information. Natl. Res. Counc., Ottawa)Google Scholar
  18. LaBarbera, M. (1984). Feeding currents and particle capture mechanisms is suspension feeding animals. Am. Zool. 24: 71–84Google Scholar
  19. Langhaar, H. L. (1942). Steady flow in the transition length of a straight tube. J. appl. Mech. 9: 55–58Google Scholar
  20. Lohmann, H. (1909). Die Gehäuse und Gallertblasen der Appendicularien und ihre Bedeutung für die Erforschung des Lebens. Verh. dt. zool. Ges. 19: 200–239Google Scholar
  21. Porter, K., Feig, Y., Vetter, E. F. (1983). Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia and Bosmina fed natural bacteria. Oecologia 58: 156–163Google Scholar
  22. Shaw D. J. (1980). Introduction to colloid and surface chemistry. Butterworths, LondonGoogle Scholar
  23. Whitehouse, B. G. (1990). Cross-flow filtration of colloids from aquatic environments. Limnol. Oceanogr. 35: 1368–1375Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • C. C. Morris
    • 1
    • 2
  • D. Deibel
    • 1
    • 2
  1. 1.Ocean Sciences CentreMemorial University of NewfoundlandSt John'sCanada
  2. 2.Department of BiologyMemorial University of NewfoundlandSt. John'sCanada

Personalised recommendations