Marine Biology

, Volume 118, Issue 2, pp 191–208 | Cite as

Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and Galápagos Islands (Ecuador). II. Poritidae

  • P. W. Glynn
  • S. B. Colley
  • C. M. Eakin
  • D. B. Smith
  • J. Cortés
  • N. J. Gassman
  • H. M. Guzmán
  • J. B. Del Rosario
  • J. S. Feingold


A comparative study of the reproductive ecology of the zooxanthellate, scleractinian corals Porites lobata Dana and P. panamensis Verrill was conducted from 1985 to 1991 in eastern Pacific reef environments that were severly impacted by the 1982–1983 El Niño warming events. P. lobata, a presumed broadcast spawner of large colony size, is widely distributed in the equatorial eastern Pacific, whereas P. panamensis, a brooder of small colony size, is abundant only on some reefs in Panamá. Both species were gonochoric with nearly 1:1 sex ratios in large study populations except for P. lobata at Caño Island that had 14% hermaphroditic colonies. Mature, unfertilized oocytes contained numerous zooxanthellae in both Porites species, and all planula developmental stages contained zooxanthellae in P. panamensis. Year-round sampling revealed high proportions of colonies with gonads, ranging from 30 to 68% in P. lobata and from 60 to 68% in P. panamensis. No clear relationship between numbers of reproductive colonies and the thermal stability of the habitat was evident in P. lobata: percent colonies with gonads at non-upwelling sites was 48 to 68% at Caño Island (Costa Rica) and Uva Island (Panamá), and at upwelling sites 30 to 50% at Saboga Island and Taboga Island (Panamá), and the Galápagos Islands (Ecuador). Similarly, 90% of all P. panamensis colonies were reproductive at Uva Island (a non-upwelling site), and 86% were reproductive at Taboga Island (an upwelling site). Upwelling at Taboga Island is seasonal, nevertheless P. panamensis produced mature gonads or planulae over most of the year (11 mo), whereas P. lobata exhibited reproductive activity during only 2 mo (May and June). No clear lunar periodicity was observed in P. panamensis (Taboga Island), but a high proportion of P. lobata showed increased gonadal development around full and new moon, especially at Caño and Uva Islands. Estimated fecundities were relatively high for P. lobata at Caño (4000 eggs cm-2 yr-1) and Uva (5200 eggs cm-2 yr-1) Islands, and notably low (70 to 110 eggs cm-2 yr-1) in the Galápagos Islands. P. panamensis mean fecundity at Taboga Island was 720 planulae cm-2 yr-1 or 4.0 mm3 cm-2 yr-1, which was lower than the egg volume production of P. lobata at Caño and Uva Islands (7.0 to 10.0 mm3 cm-2 yr-1). The capacity of P. lobata and P. panamensis to reproduce sexually supports the notion that eastern Pacific coral reef recovery may not be dependent on long-distance dispersal from central Pacific areas. However, sexual recruits of P. lobata are absent or uncommon at all eastern Pacific study sites while recruits of P. panamensis were common to abundant only at the Uva Island study site. Asexual fragmentation in P. lobata augments recruitment locally, but plays no role in P. panamensis recruitment.


Coral Reef Ecuador Unfertilized Oocyte Broadcast Spawner Lunar Periodicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babcock, R. C., Bull, G. D., Harrison, P. L., Heyward, A. J., Oliver, J. K., Wallace, C. C., Willis, B. L. (1986). Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90: 379–394Google Scholar
  2. Birkeland, C. (1977). The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc. 3rd int. coral Reef Symp. 1: 15–21 [Taylor, D. L. (ed.) Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida]Google Scholar
  3. Chavez, F. P., Brusca, R. C. (1991). The Galápagos Islands and their relation to oceanographic processes in the tropical Pacific. In: James, M. J. (ed.) Galápagos marine invertebrates: taxonomy, biogeography, and evolution in Darwin's Islands. Plenum Press, New York, p. 9–33Google Scholar
  4. Chornesky, E. A., Peters, E. C. (1987). Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol. Bull. mar. biol. Lab., Woods Hole 172: 161–177Google Scholar
  5. Connell, J. H., Keough, M. J. (1985). Disturbance and patch dynamics of subtidal marine animals on hard substrata. In: Pickett, S. T.A., White, P. S. (eds.) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, p. 125–151Google Scholar
  6. Cortés, J., Murillo, M. M., Guzmán, H. M., Acuña, J. (1984). Pérdida de zooxantelas y muerte de corales y otros organismos arrecifales en el Caribe y Pacifico de Costa Rica. Revta Biol. trop. 32: 227–231Google Scholar
  7. Dana, T. F. (1975). Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33: 355–374Google Scholar
  8. D'Croz, L., Del Rosario, J. B., Gómez, J. A. (1991). Upwelling and phytoplankton in the Bay of Panamá. Revta Biol. trop. 39: 233–241Google Scholar
  9. Dollar, S. J. (1982). Wave stress and coral community structure in Hawaii. Coral Reefs 1: 71–81Google Scholar
  10. Durham, J. W., Barnard, J. L. (1952). Stony corals of the eastern Pacific collected by the Velero III and Velero IV. Allan Hancock Pacif. Exped. 16: 1–110Google Scholar
  11. Enfield, D. B., Calienes, R., Pizarro, L. (1992). Oceanographic conditions along the coast of South America during the 1991–92 El Niño/Southern Oscillation. Trop. Oceans Glob. Atmos. (TOGA) Notes 8: 1–4Google Scholar
  12. Fadlallah, Y. H. (1983). Sexual reproduction, development and larval biology in scleractinian corals. A review. Coral Reefs 2: 129–150Google Scholar
  13. Giese, A. C., Pearse, J. S. (1974). Introduction. In: Giese, A. C., Pearse, J. S. (eds.) Reproduction of marine invertebrates, Vol. I. Acoelomate and pseudocoelomate metazoans. Academic Press, New York, p. 1–49Google Scholar
  14. Glynn, P. W. (1983). Extensive ‘bleaching’ and death of reef corals on the Pacific coast of Panamá. Envir. Conserv. 10: 149–154Google Scholar
  15. Glynn, P. W. (1984). Widespread coral mortality and the 1982/83 El Niño warming event. Envir. Conserv. 11: 133–146Google Scholar
  16. Glynn, P. W. (1988). El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7: 129–160Google Scholar
  17. Glynn, P. W. (1990). Coral mortality and disturbances to coral reefs in the tropical eastern Pacific. In: Glynn, P. W. (ed.) Global ecological consequences of the 1982–1983 El Niño-Southern Oscillation. Elsevier Oceanography Series, 52, Amsterdam, p. 55–126Google Scholar
  18. Glynn, P. W., Cortés, J., Guzmán, H. M., Richmond, R. H. (1988). El Niño (1982–83) associated coral mortality and relationship to sea surface temperature deviations in the tropical eastern Pacific. Proc 6th int. coral Reef Symp. 3: 237–243 [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia]Google Scholar
  19. Glynn, P. W., D'Croz, L. (1990). Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8: 181–191Google Scholar
  20. Glynn, P. W., Druffel, E. M., Dunbar, R. B. (1983). A dead Central American coral reef tract: possible link with the Little Ice Age. J. mar. Res. 41: 605–637Google Scholar
  21. Glynn, P. W., Gassman, N. J., Eakin, C. M., Cortés, J., Smith, D. B., Guzmán, H. M. (1991). Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and Galápagos Islands (Ecuador). I. Pocilloporidae. Mar. Biol. 109: 355–368Google Scholar
  22. Glynn, P. W., Stewart, R. H., McCosker, J. E. (1972). Pacific coral reefs of Panamá: structure, distribution and predators. Geol. Rdsch 61: 483–519Google Scholar
  23. Glynn, P. W., Wellington, G. M. (1983). Corals and coral reefs of the Galápagos Islands. University of California Press, BerkeleyGoogle Scholar
  24. Guzmán, H. M. (1988). Distribución y abundancia de organismos coralívoros en los arrecifes coralinos de la Isla del Caño, Costa Rica. Revta Biol. trop. 36(2a): 191–207Google Scholar
  25. Guzmán, H. M., Cortés, J. (1989). Coral reef community structure at Caño Island, Pacific Costa Rica. Pubbl. Staz. zool. Napoli (I: Mar. Ecol) 10: 23–41Google Scholar
  26. Guzmán, H. M., Cortés, J., Richmond, R. H., Glynn, P. W. (1987). Efectos del fenómeno de El Niño-Oscilación Sureña 1982–83 en los arrecifes coralinos de la Isla del Caño, Costa Rica. Revta Biol. trop. 35: 325–332Google Scholar
  27. Guzmán. H. M., Robertson, D. R. (1989). Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the eastern Pacific. Mar. Ecol. Prog. Ser. 55: 121–131Google Scholar
  28. Harriott, V. J. (1983). Reproductive ecology of four scleractinian species at Lizard Island, Great Barrier Reef. Coral Reefs 2: 9–18Google Scholar
  29. Harrison, P. L., Wallace, C. C. (1990). Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky, Z. (ed.) Coral reefs, ecosystems of the world 25. Elsevier, Amsterdam, p. 133–207Google Scholar
  30. Highsmith, R. C. (1980). Passive colonization and asexual colony multiplication in the massive coral Porites lutea Milne Edwards & Haime. J. exp. mar. Biol. Ecol. 47: 55–67Google Scholar
  31. Highsmith, R. C. (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7: 207–226Google Scholar
  32. Houvenaghel, G. T. (1984). Oceanographic setting of the Galápagos Islands. In: Perry, R. (ed.) Key environments, Galápagos. Pergamon, Oxford, p. 43–54Google Scholar
  33. Jokiel, P. L. (1985). Lunar periodicity of planula release in the reef coral Pocillopora damicornis in relation to various environmental factors. Proc. 5th int. coral Reef Congr. 4: 307–312 [Gabrié, G. et al. (eds.) Antenne Muserum-EPHE, Moorea, French Polynesia]Google Scholar
  34. Knowlton, N. (1993). Sibling species in the sea. A. Rev. Ecol. Syst. 24: 189–216Google Scholar
  35. Knowlton, N., Weil, E., Weigt, L. A., Guzmán, H. M. (1992). Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255: 330–333Google Scholar
  36. Kogelschatz, J., Solorzano, L., Barber, R., Mendoza, P. (1985). Oceanographic conditions in the Galápagos Islands during the 1982/83 El Niño. In: Robinson, G., del Pino, E. M. (eds.) El Niño in the Galápagos Islands: the 1982–1983 event. Charles Darwin Foundation for the Galápagos Islands, Quito, Ecuador, p. 91–123Google Scholar
  37. Kojis, B. L. (1986). Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia). II. Latitudinal variation in A. palifera from the Great Barrier Reef and Papua New Guinea. Mar. Biol. 91: 311–318Google Scholar
  38. Kojis, B. L., Quinn, N. J. (1981). Reproductive strategies in four species of Porites (Scleractinia). Proc. 4th int. Symp. coral Reefs 2: 145–151 [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City]Google Scholar
  39. Kojis, B. L., Quinn, N. J. (1984). Seasonal and depth variation in fecundity of Acropora palifera at two reefs in Papua New Guinea. Coral Reefs 3: 165–172Google Scholar
  40. Lander, M. A. (1989). A comparative analysis of the 1987 ENSO event. Trop. Ocean-Atmos. Newsl. (TOAN) 49: 3–6Google Scholar
  41. Luna, L. G. (1968). Manual of histologic staining methods. McGraw-Hill, New YorkGoogle Scholar
  42. Oliver, J. K., Babcock, R. C., Harrison, P. L., Willis, B. L. (1988). Geographic extent of mass coral spawning: clues to ultimate causal factors. Proc. 6th int. coral Reef Symp. 2: 803–810 [Choat, J. H. et al. (eds.) Sixth International Coral Reef Symposium Executive Committee, Townsville, Australia]Google Scholar
  43. Pearson, R. G. (1981). Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4: 105–122Google Scholar
  44. Prahl, H. von (1985). Blanqueo masivo y muerte de corales hermatípicos en el Pacífico Colombiano atribuídos al fenómeno de El Niño 1982–83. Boln ERFEN (CPPS, Bogotá) 12: 22–24Google Scholar
  45. Quinn, W. H., Neal, V. T., Antunez de Mayolo, S. E. (1987). El Niño occurrences over the past four and a half centuries. J. geophys. Res. 92: 14449–14461Google Scholar
  46. Richmond, R. H. (1985). Variations in the population biology of Pocillopora damicornis across the Pacific Ocean. Proc. 5th int. coral Reef Congr. 6: 101–106 [Gabrie, C. et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  47. Richmond, R. H. (1987). Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar. Biol. 93: 527–533Google Scholar
  48. Richmond, R. H. (1990). The effects of the El Niño/Southern Oscillation on the dispersal of corals and other marine organisms. In: Glynn, P. W. (ed.) Global ecological consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier Oceanography Series, 52, Amsterdam, p. 127–140Google Scholar
  49. Richmond, R. H., Hunter, C. L. (1990). Reproduction and recruitment of corals: comparisons among the Caribbean, the tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60: 185–203Google Scholar
  50. Robalino, M. (1985). Registros meteorológicos de la estación científica Charles Darwin para 1982–83. In: Robinson, G., del Pino, E. M. (eds.) El Niño in the Galápagos Islands: the 1982–83 event. Charles Darwin Foundation for the Galápagos Islands, Quito, Ecuador, p. 83–90Google Scholar
  51. Robinson, G. (1985). The influence of the 1982–83 El Niño on Galápagos marine life. In: Robinson, G., del Pino, E. M. (eds.) El Niño in the Galápagos Islands: the 1982–1983 event. Charles Darwin Foundation for the Galápagos Islands. Quito, Ecuador, p. 153–190Google Scholar
  52. Sheppard, C. R. C. (1987). Coral species of the Indian Ocean and adjacent seas: a synonymized compilation and some regional distributional patterns. Atoll Res. Bull. 307: 1–32Google Scholar
  53. Smayda, T. J. (1966). A quantitative analysis of the phytoplankton of the Gulf of Panamá. III. General ecological conditions and the phytoplankton dynamics at 8°45′, 79°23′W from November 1954 to May 1957. Bull. inter.-Am. trop. Tuna Commn 11: 353–612Google Scholar
  54. Smith, D. B. (1991). The reproduction and recruitment of Porites panamensis Verrill at Uva Island, Pacific Panamá. MS thesis, Univ. Miami, Florida, p. 64Google Scholar
  55. Squires, D. F. (1959). Results of the Puritan-American Museum of Natural History Expedition to western Mexico. 7. Corals and coral reefs in the Gulf of California. Bull. Am. Mus. nat. Hist. 118(7): 367–432Google Scholar
  56. Szmant, A. M. (1986). Reproductive ecology of Caribbean reef corals. Coral Reefs 5: 43–53Google Scholar
  57. Szmant-Froelich, A., Reutter, M., Riggs, L. (1985). Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. mar. Sci. 37: 880–892Google Scholar
  58. Tomascik, T., Sander, F. (1987). Effects of eutrophication on reef-building corals. III. Reproduction of the reef-building coral Porites porites. Mar. Biol. 94: 77–94Google Scholar
  59. Van Moorsel, G. W. N. M. (1983). Reproductive strategies in two closely related stony corals (Agaricia, Scleractinia). Mar. Ecol. Prog. Ser. 13: 273–283Google Scholar
  60. Veron, J. E. N., Kelley, R. (1988). Species stability in reef corals of Papua New Guinea and the Indo Pacific. Ass. Aust. Palaeontol. Mem. 6: 1–69Google Scholar
  61. Wellington, G. M., Glynn, P. W. (1983). Environmental influences on skeletal banding in eastern Pacific (Panamá) corals. Coral Reefs 1: 215–222Google Scholar
  62. Wells, J. W. (1983). Annotated list of the scleractinian corals of the Galápagos. In: Glynn, P. W., Wellington, G. M. Corals and coral reefs of the Galápagos Islands. University of California Press, Berkeley, p. 212–295Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • P. W. Glynn
    • 1
  • S. B. Colley
    • 1
  • C. M. Eakin
    • 2
  • D. B. Smith
    • 3
  • J. Cortés
    • 4
  • N. J. Gassman
    • 1
  • H. M. Guzmán
    • 5
  • J. B. Del Rosario
    • 6
  • J. S. Feingold
    • 1
  1. 1.Division of marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Office of Global ProgramsNational Oceanic and Atmospheric AdministrationSilver SpringUSA
  3. 3.School of Forestry, Wildlife and FisheriesLouisiana State UniversityBaton RougeUSA
  4. 4.Centro de Investigación en Ciencias del Mar y LimnologíaUniversidad de Costa RicaSan PedroCosta Rica
  5. 5.Unit 0948Smithsonian Tropical Research InstituteUSA
  6. 6.Departmento de Biologia AcuáticaUniversidad de PanamáRepública de Panamá

Personalised recommendations