Advertisement

Marine Biology

, Volume 118, Issue 2, pp 177–182 | Cite as

Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata

  • J. C. Coll
  • B. F. Bowden
  • G. V. Meehan
  • G. M. Konig
  • A. R. Carroll
  • D. M. Tapiolas
  • P. M. Aliño
  • A. Heaton
  • R. De Nys
  • P. A. Leone
  • M. Maida
  • T. L. Aceret
  • R. H. Willis
  • R. C. Babcock
  • B. L. Willis
  • Z. Florian
  • M. N. Clayton
  • R. L. Miller
Article

Abstract

This paper provides the first evidence for sperm chemotaxis in the Scleractinia. Montipora digitata Dana, 1845 (Scleractinia: Coelenterata) is a hermaphroditic coral which reproduces bi-annually, releasing egg-sperm bundles during the mass spawning at Magnetic Island (19°10′S; 146°52′E) in late spring-early summer, and autumn each year. The buoyant egg-sperm bundles float to the surface where they break apart, releasing eggs and sperm into the ocean. Fertilisation occurs after ∼30 min. Unfertilized eggs were collected, washed free of sperm, and freeze-dried. The eggs were extracted with dichloromethane, fractionated by chromatography on silica gel, and the fractions assayed for their ability to attract M. digitata sperm. The active fraction was further fractionated by high-performance liquid chromatography, resulting in the isolation of three highly unsaturated fatty alcohols: (1) dodeca-2,4-diynol; (2) tetradec-13-ene-2,4-diynol; (3) (14Z)-heptadeca-14,16-diene-2,4-diynol. Of these three compounds, only Compound 1 attracted sperm of M. digitata. Synthetic Compound 1, produced from simple precursors by known reactions, possessed sperm-attracting activity comparable to the naturally derived attractant. Preliminary experiments suggest that the natural mixture of Compounds 1, 2 and 3 in the ratio 1:4:9 is more effective in attracting sperm from M. digitata than sperm from other Montipora species. Sperm attractants may act to reduce the incidence of hybridisation between different species of Montipora.

Keywords

Chromatography Liquid Chromatography Dichloromethane Active Fraction Fatty Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock, R. C., Bull, G. D., Harrison, P., Heyward, A. J., Oliver, J. K., Wallace, C. C., Willis, B. L. (1986). Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90: 379–394Google Scholar
  2. Babcock, R. C., Heyward, A. J. (1986). Larval development of certain gamete spawning scleractinian corals. Corals Reefs 5: 111–116Google Scholar
  3. Coll, J. C., Bowden, B. F. (1984). The application of vacuum liquid chromatography to the separation of terpene mixtures. J. nat. Products (Lloydia) 49: 934–936Google Scholar
  4. Coll, J. C., Miller, R. L. (1991). Nature of sperm chemoattractants in coral and starfish. In: Baccetti, B. (ed.) Comparative spermatology, 20 years after. Raven Press, New York, p. 129–134Google Scholar
  5. Eglington, G., McCrae, W. (1963). In: Raphael, R. A., Taylor, E. C., Wynberg, H. (eds.) Advances in organic chemistry: methods and results. Vol. 4. Interscience, New York, p. 225–328Google Scholar
  6. Harrison, P. L., Babcock, R. C., Bull, G. D., Oliver, J. K., Wallace, C. C., Willis, B. L. (1984). Mass spawning in tropical reef corals. Science, N.Y. 223: 1186–1189Google Scholar
  7. Harrison, P. L., Wallace, C. C. (1990). Reproduction, dispersal and recruitment of scleractinian corals. In: Z. Dubinsky (ed.) Coral reef ecosystems. Elsevier, Amsterdam, p. 133–207Google Scholar
  8. Heyward, A. J., Babcock, R. C. (1986). Self- and cross-fertilization in scleractinian corals. Mar. Biol. 90: 191–195Google Scholar
  9. Heyward, A. J., Collins, J. D. (1985). Growth and sexual reproduction in the scleractinian coral Montipora digitata (Dana). Aust. J. mar. Freshwat. Res. 36: 441–446Google Scholar
  10. Heyward, A. J., Yamazato, K., Yeemin, T., Minei, M. (1987). Sexual reproduction of coral in Okinawa. Galaxea 6: 331–343Google Scholar
  11. Higa, T., Tanaka, J, Kohagura, T. Wauke, T. (1990). Bioactive polyacetylenes from stony corals. Chem Lett. (Chem. Soc. Japan, Tokyo) 145–148Google Scholar
  12. Hyman, L. (1940). The Invertebrates: Protozoa through Ctenophora. Vol. 1. McGraw-Hill, New YorkGoogle Scholar
  13. Kojis, B. L., Quinn, N. J. (1981). Reproductive strategies in four species of Porites (Scleractinia). Proc. 4th int. coral Reef Symp. 2: 145–151. [Gomez, E. D., et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]Google Scholar
  14. Maier, I., Müller, D. G. (1986). Sexual pheromones in algae. Biol. Bull. mar. biol. Lab., Woods Hole 170: 145–175Google Scholar
  15. Miller, R. L. (1979). Sperm chemotaxis in the hydromedusae. I. Species specificity and sperm behavior. Mar. Biol. 53: 99–112Google Scholar
  16. Miller, R. L. (1985 a). Sperm chemo-orientation in the metazoa. In: Metz, C. B. Jr., Monroy, A. (eds.). The biology of fertilization Vol. 2. New York, Academic Press, p. 275–337Google Scholar
  17. Miller, R. L. (1985 b). Demonstration of sperm chemotaxis in the Echmodermata: Holothuroidea, Ophiuroidea. J. exp. Zool. 234: 383–414Google Scholar
  18. Miller, R. L., King, K. (1983). Sperm chemotaxis in Oikopleura dioica (Urochordata: Larvacea). Biol. mar. biol. Lab., Woods Hole 165: 419–428Google Scholar
  19. Müller, D. G. (1976). Quantitative evaluation of sexual chemotaxis in two marine brown algae. Z. PffPhysiol. 30: 120–130Google Scholar
  20. Müller, D. G. (1977). Chemical basis of sexual approach in marine brown algae. In: Faulkner, D. J., Fenical, W. H. (eds.) Marine natural products chemistry. Plenum Press, New York, p. 351–360 [NATO Conf. Ser. Ser. IV: mar. Sciences No. 1]Google Scholar
  21. Pennington, J. T. (1985). The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. mar. biol. Lab., Woods Hole 169: 417–430Google Scholar
  22. Simpson, C. J. (1985). Mass spawning of scleractinian corals in the Dampier Archipelago and the implications for management of coral reefs in Western Australia. Bull. Dep. Conserv. Envir. Perth, Australia 244: 1–35Google Scholar
  23. Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K., Wallace, C. C. (1985). Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. Proc. 5th int. coral Reef Congr. 4: 343–348 [Gabrié, C., et al. (eds.) Antenne Museum-EPHE, Moorea, French Polynesia]Google Scholar
  24. Willis, B. L., Babcock, R. C., Harrison, P. L., Wallace, C. C. (1993). Experimental evidence of hybridization in reef corals involved in the mass spawning events. Proc. 7th int. coral Reef Symp. 1: p. 109. [Richmond, R. H. (ed.) University of Guam, Mangilao, Guam]Google Scholar
  25. Zar, J. H. (1984). Biostatistical analysis. 2nd edn. Prentice-Hall Inc., Englewood Cliffs, N.J.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. C. Coll
    • 1
  • B. F. Bowden
    • 2
  • G. V. Meehan
    • 2
  • G. M. Konig
    • 2
  • A. R. Carroll
    • 2
  • D. M. Tapiolas
    • 2
  • P. M. Aliño
    • 2
  • A. Heaton
    • 2
  • R. De Nys
    • 2
  • P. A. Leone
    • 2
  • M. Maida
    • 2
  • T. L. Aceret
    • 2
  • R. H. Willis
    • 2
  • R. C. Babcock
    • 3
  • B. L. Willis
    • 3
  • Z. Florian
    • 3
  • M. N. Clayton
    • 4
  • R. L. Miller
    • 5
  1. 1.ChancelloryUniversity of Central QueenslandRockhamptonAustralia
  2. 2.Department of Molecular SciencesJames Cook University of North QueenslandTownsvilleAustralia
  3. 3.School of Biological SciencesJames Cook University of North QueenslandTownsvilleAustralia
  4. 4.Botany DepartmentMonash UniversityClaytonAustralia
  5. 5.Department of BiologyTemple UniversityPhiladelphiaUSA

Personalised recommendations