Wood Science and Technology

, Volume 21, Issue 1, pp 11–25 | Cite as

14C-Lignin degradation by three Australian termite species

Isoptera: Mastotermitidae, Rhinotermitidae, Termitidae
  • L. J. Cookson
Article
  • 90 Downloads

Summary

The termites Nasutitermes exitiosus (Hill), Coptotermes acinaciformis (Froggatt), and Mastotermes darwiniensis Froggatt were examined for their ability to degrade lignin. Several 14C-(lignin)-lignocelluloses labelled in the 3′ side chain position were prepared by infusing plant stems for seven days with the lignin precursor, 14C-cinnamic acid. Based on acid and alkali solubilites, the lignin precursor was more deeply incorporated into the lignin polymer than usually reported for 14C-(lignin)-lignocellulose preparations. N. exitiosus was able to degrade a 14C-(U-ring)-synthetic lignin (5% breakdown) and the lignin component of certain hardwood 14C-(lignin)-lignocelluloses (about 4–6.5% breakdown), but not the lignin component of softwood 14C-(lignin)-lignocellulose. Both C. acinaciformis and M. darwiniensis were less able to degrade any of the 14C-lignins than N. exitiosus. The difference may be due to their possessing different types of gut symbionts. Most of the degradation by N. exitiosus took place during the first week of the 14 day bioassays. Very low amounts (0.03–0.21%) were degraded in the faeces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butler, J. H. A.; Buckerfield, J. C. 1979: Digestion of lignin by termites. Soil Biol. Biochem. 11: 507–511Google Scholar
  2. Cohen, W. E. 1934: The chemistry of Australian timbers. Part 4. A study of the lignin determination. II. Coun. Sci. Ind. Res. Aust. Pamphlet 51: 20 pp.Google Scholar
  3. Colberg, P. J.; Young, L. Y. 1982: Biodegradation of lignin-derived molecules under anaerobic conditions. Can. J. Microbiol. 28: 886–889Google Scholar
  4. Cookson, L. J. 1985: Unpubl: The fate of lignin in the gut of termites. MSc. Thesis, Monash University: 259 pp.Google Scholar
  5. Crawford, D. L. 1978: Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35: 1041–1045Google Scholar
  6. Crawford, D. L.; Sutherland, J. B. 1979: The role of actinomycetes in the decomposition of lignocellulose. Dev. Ind. Microbiol. 20: 143–151Google Scholar
  7. Crawford, R. L. 1981: Lignin biodegradation and transformation. New York: Wiley-InterscienceGoogle Scholar
  8. Crawford, R. L.; Crawford, D. L. 1978: Radioisotopic methods for the study of lignin biodegradation. Dev. Ind. Microbiol. 19: 35–49Google Scholar
  9. Crawford, R. L.; Robinson, L. E.; Cheh, A. 1980: 14C-labeled lignins as substrates for the study of lignin biodegradation and transformation. In: Kirk, T. K.; Higuchi T.; Chang, H.-M. (Eds.) Lignin biodegradation: Microbiology, chemistry, and potential applications. Vol. I, pp. 61–76. Boca Raton, Florida: CRC PressGoogle Scholar
  10. Effland, M. J. 1977: Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 60: 143–144Google Scholar
  11. El-Basyouni, S. Z.; Neish, A. C.; Towers, G. H. N. 1964: The phenolic acids in wheat-III. Insoluble derivatives of phenolic cinnamic acids as natural intermediates in lignin biosynthesis. Phytochemistry 3: 627–639Google Scholar
  12. Esenther, G. R.; Kirk, T. K. 1974: Catabolism of aspen sapwood in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Ent. Soc. Am. 67: 989–991Google Scholar
  13. Federle, T. W.; Vestal, J. R. 1980: Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation. App. Environ. Microbiol. 40: 32–39Google Scholar
  14. French, J. R. J.; Bland, D. E. 1975: Lignin degradation in the termites Coptotermes lacteus and Nasutitermes exitiosus. Mater. Org. 10: 281–288Google Scholar
  15. Gay, F. J.; Greaves, T.; Holdaway, F. G.; Wetherly, A. H. 1955: Standard laboratory cultures of termites for evaluating the resistance of timber, timber preservatives, and other materials to termite attack. Bull. Commonw. Scient. ind. Res. Org. 277: 60 pp.Google Scholar
  16. Haider, K.; Trojanowski, J.; Sundman, V. 1978: Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch. Microbiol. 119: 103–106Google Scholar
  17. Hillis, W. E. 1972: Formation and properties of some wood extractives. Phytochemistry 11: 1207–1218Google Scholar
  18. Hillis, W. E.; Yazaki, Y. 1973: Properties of some methylellagic acids and their glycosides. Phytochemistry 12: 2963–2968Google Scholar
  19. Howick, C. D.; Creffield, J. W. 1975: The development of a standard laboratory bio-assay technique with Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Z. Angew. Entomol. 78: 126–138Google Scholar
  20. Kirk, T. K. 1973: The chemistry and biochemistry of decay. In: Nicholas, D. D. (Ed.): Wood deterioration and its prevention by preservative treatments, pp. 149–181. Syracuse, New York: Syracuse University PressGoogle Scholar
  21. Kirk, T. K.; Connors, W. J.; Bleam, R. D.; Hackett, W. F.; Zeikus, J. G. 1975: Preparation and microbial decomposition of synthetic (14C) lignins. Proc. Natl. Acad. Sci. USA 72: 2515–2519Google Scholar
  22. Kovoor, J. 1964: Modifications chimiques provoquees par un termitidé (Microcerotermes edentatus Was.) dans du bois de peuplier sain ou partillement dégradé par des champignons. Bull. Biol. France Belg. 98: 491–510Google Scholar
  23. Lai, Y. Z.; Sarkanen, K. V. 1971: Isolation and structural studies. In: Sarkanen, K. V.; Ludwig, C. H. (Eds.) Lignin: Occurrence, formation, structure, and reactions, pp. 165–240. New York: Wiley-InterscienceGoogle Scholar
  24. Lavette, A. 1964: La digestion du bois par les flagellés symbiotiques des termites: cellulose et lignine. C. R. Acad. Sci. (Ser. D) 258: 2211–2213Google Scholar
  25. Leopold, B. 1952: Studies on lignin. XIV. The composition of Douglas fir wood digested by the West Indian dry-wood termite (Cryptotermes brevis Walker). Svensk Papperstidn. 55: 784–786Google Scholar
  26. Maccubbin, A. E.; Hodson, R. E. 1980: Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl. Environ. Microbiol. 40: 735–740Google Scholar
  27. Migita, W.; Kawamura, I. 1944: Chemical analyses of wood. J. Agric. Chem. Soc. Jpn. 20: 348Google Scholar
  28. Mishra, S. C. 1980: Studies on deterioration of wood by insects. IV. Digestibility and digestion of major wood components by the termite Neotermes bosei Snyder (Isoptera: Kalotermitidae). Mater. Org. 14: 269–277Google Scholar
  29. Moore, W. E.; Johnson, D. B. 1967: Procedures for the analysis of wood and wood products. USDA Forest Service, Forest Products Laboratory, Madison, WIGoogle Scholar
  30. Nel, J. J. C.; Hewitt, P. H.; Joubert, L. 1970: The collection and utilization of redgrass (Themeda triandra Forsk.) by laboratory colonies of the harvester termite, Hodotermes mossambicus (Hagen) and its relation to population density. J. ent. Soc. sth. Afr. 33: 331–340Google Scholar
  31. Sarkanen, K. V.; Hergert, H. L. 1971: Classification and distribution. In: Sarkanen, K. V.; Ludwig, C. H. (Eds.): Lignins: Occurrence, formation, structure and reactions. pp. 43–94. New York: Wiley-InterscienceGoogle Scholar
  32. Seifert, K. 1962: Die chemische Veränderung der Holzzellwand-Komponenten unter dem Einfluß tierischer und pflanzlicher Schädlinge. 4. Mitteilung: Die Verdauung von Kiefernund Rotbuchenholz durch die Termite Kalotermes flavicollis Fabr. Holzforschung 16: 161–168Google Scholar
  33. Seifert, K.; Becker, G. 1965: Der chemische Abbau von Laub-und Nadelholzarten durch verschiedene Termiten. Holzforschung 19: 105–111Google Scholar
  34. Trojanowski, J.; Haider, K.; Sundman, V. 1977: Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Arch. Microbiol. 114: 149–153Google Scholar
  35. Winston, P. W.; Bates, D. H. 1960: Saturated solutions for the control of humidity in biological research. Ecology 41: 232–237Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. J. Cookson
    • 1
    • 2
  1. 1.MelbourneAustralia
  2. 2.CSIRO Division of Chemical and Wood TechnologyHighettAustralia

Personalised recommendations