Advertisement

Marine Biology

, Volume 120, Issue 2, pp 221–229 | Cite as

Deep-water decapod crustacean communities in the Northwestern Mediterranean: influence of submarine canyons and season

  • J. E. Cartes
  • J. B. Company
  • F. Maynou
Article

Abstract

The specific composition and abundance of bathyal decapods in the Catalan Sea were investigated. A total of 109 bottom trawls were effected at depths ranging from 141 to 730 m on the continental slope in the Catalan Sea (northwestern Mediterranean) during two sampling cruises in spring and autumn 1991. Multivariate analysis of the samples revealed four groups of the decapod crustacean communities: (1) A shelf-slope transition-zone group at depths between 146 and 296 m, primarily characterized by the presence of Plesionika heterocarpus; (2) an upper-slope community between 245 and 485 m, characterized by the presence of the mesopelagic species Pasiphaea sivado and Sergestes arcticus, with Processa nouveli, Solenocera membranacea and Nephrops norvegicus as secondary species; (3) a middle-slope community below 514 m, with Aristeus antennatus and Calocaris macandreae as the most abundant species; (4) a group at 430 to 515 m, comprising all samples collected exclusively within or in the vicinity of submarine canyons. Mesopelagic decapods were predominant on the slope, while benthopelagic fishes (Merluccius merluccius, Micromesistius poutassou, Gadiculus argenteus) replaced mesopelagic decapods on the shelf. There were seasonal variations, with higher densities of mesopelagic species in spring, which were probably related, among other factors, to variations in the photoperiod. Our surveys also revealed higher species richness in the canyons together with seasonal changes in the megafaunal biomass. Generally, the upper and middle-slope communities both displayed seasonal changes in the composition and abundance of megabenthos.

Keywords

Biomass Multivariate Analysis Species Richness Seasonal Variation Seasonal Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelló P, Valladares FJ (1988) Bathyal decapod crustaceans of the Catalan Sea (Northwestern Mediterranean). Mésogée 48:97–102Google Scholar
  2. Abelló P, Valladares FJ, Castellón, A (1988) Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean). Mar Biol 98:39–49Google Scholar
  3. Angel MV (1990) Life in the benthic boundary layer: connections to the mid-water and sea floor. Phil Trans R Soc 331:15–28Google Scholar
  4. Buscail R, Pocklington R, Daumas R, Guidi L (1990) Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin. Contin Shelf Res 10: 1089–1122Google Scholar
  5. Carrasson M, Stefanescu C, Cartes JE (1992) Diets and bathymetric distributions of two bathyal sharks of the Catalan deep sea (western Mediterranean). Mar Ecol Prog Ser 82:21–30Google Scholar
  6. Cartes JE (1993) Diets of deep-water pandalid shrimps on the Western Mediterranean slope. Mar Ecol Prog Ser 96:49–61Google Scholar
  7. Cartes JE, Abelló P (1992) Comparative feeding habits of polychelid lobsters in the western Mediterranean. Mar Ecol Prog Ser 84: 139–150Google Scholar
  8. Cartes JE, Sardà F (1992) Abundance and diversity of decapod crustaceans in the deep-Catalan Sea (Western Mediterranean). J nat Hist 26:1305–1323Google Scholar
  9. Cartes JE, Sardà F (1993) Zonation of deep-sea decapod fauna in the Catalan Sea (Western Mediterranean). Mar Ecol Prog Ser 94: 27–34Google Scholar
  10. Chardy P, Glemarec M, Laurec L (1976) Application of inertia methods to benthic marine ecology. Practical implications of the basic options. Estuar cstl mar Sci 4:179–205Google Scholar
  11. Conan G, Maynou F, Sardà F (1992) Direct assessment of the harvestable biomass from a stock of Nephrops norvegicus, seasonal and spatial variations. Int Counc Explor Sea Comm Meet (Shellfish Benthos Comm K 22:1–24Google Scholar
  12. De Bovée F, Guidi LD, Soyer J (1990) Quantitative distribution of deep-sea meiobenthos in the northwestern Mediterranean (Gulf of Lions) Contin Shelf Res 10:1123–1146Google Scholar
  13. Emelyanov EM (1972) Principal types of recent bottom sediments in the Mediterranean Sea: their mineralogy and geochemistry. In: Stanley DJ (ed) The Mediterranean Sea: a natural sedimentation laboratory. Dowden, Hutchinson & Ross, Stroudsburg, p 355–386Google Scholar
  14. Estrada M, Vives F, Alcaraz M (1985) Life and productivity of the open sea. In: Margalef R (ed) Key environments: Western Mediterranean. Pergamon Press, New York, p 148–197Google Scholar
  15. Flos J (1985) The driving machine. In: Margalef R (ed) Key environments: Western Mediterranean. Pergamon Press, New York, p 60–99Google Scholar
  16. Franqueville C (1971) Macroplancton profond (invertébrés) de la Mediterranée nord-occidentale. Téthys 3:11–56Google Scholar
  17. Gardner WD (1989) Baltimore canyon as a modern conduit of sediment to the deep sea. Deep-Soa Res 36:323–358Google Scholar
  18. Ghidalia W, Bourgois F (1961) Influence de la témperature et de l'éclairement sur la distribution des crevettes des moyennes et grandes profondeurs. Stud Rev gen Fish Coun Méditerr 16: 1–53Google Scholar
  19. Haedrich RL, Rowe GT, Polloni PT (1980) The megabenthic fauna in the Deep Sea south of New England, USA. Mar Biol 57: 165–179Google Scholar
  20. Hecker B (1990) Variation in megafaunal assemblages on the continental margin south of New England. Deep-Sea Res 37:37–57Google Scholar
  21. Houston KA, Haedrich RL (1984) Abundance and biomass of macrobenthos in the vicinity of Carson Submarine Canyon, northwest Atlantic Ocean. Mar Biol 82:301–305Google Scholar
  22. Lagardère JP (1970) Les crevettes du Golfe de Gascogne (région sud). Téthys 1:1023–1048Google Scholar
  23. Lleonart J (1979) La comunitat epibentònica del banc canariosaharià, tipificació i cartografía mijançant l'anàlisi de dades i comentaris critics sobre la matodologia. Tesi doctoral. Universitat de Barcelona, BarcelonaGoogle Scholar
  24. Macpherson E (1978) Régimen alimentario de Phycis blennoides (Brünnich) y Antonogadus megalokynodon (Kolombatovic) (Pisces: Gadidae) en el Mediterráneo Occidental. Investigación pesq 42:455–466Google Scholar
  25. Macpherson E (1979) Ecological overlap between macrourids in the Western Mediterranean Sea. Mar Biol 53:149–159Google Scholar
  26. Macpherson E (1991) Biogeography and community structure of the decapod crustacean fauna off Namibia (Southeast Atlantic). J Crustacean Biol 11:405–415Google Scholar
  27. Markle DF, Dadswell MJ, Halliday RG (1988) Demersal fish and decapod crustacean fauna of the upper continental slope off Nova Scotia from La Have to Sr. Pierre Banks. Can J Zool 66: 1952–1960Google Scholar
  28. Merrett NR, Gordon JDM, Stehmann M, Haedrich RL (1991) Deep demersal fish assemblage structure in the Porcupine Seabight (eastern North Atlantic): slope sampling by three different trawls compared. J mar biol Ass UK 71:329–358Google Scholar
  29. Merrett NR, Marshall NB (1981) Observations on the ecology of deep-sea bottom-living fishes collected off northwest Africa (08°–27°N). Prog Oceanogr 9:185–244Google Scholar
  30. Monaco A, Biscaye P, Soyer J, Pocklington R, Heussner S (1990) Particle fluxes and ecosystem response on a continental margin: the 1985–1988 Mediterranean ECOMARGE experiment. Contin Shelf Res 10:809–840Google Scholar
  31. Oliver M (1968) Carta de pesca de Cataluña. III. Desde Barcelona al Cabo Tortosa. Trab Inst esp Oceanogr 36:1–11Google Scholar
  32. Pérès JM (1985) History of the Mediterranean biota and the colonization of the depths. In: Margalef R (ed) Key environments: Western Mediterranean. Pergamon Press, New York, p 198–232Google Scholar
  33. Pielou EC (1984) The interpretation of ecological data. John Wiley & Sons, New YorkGoogle Scholar
  34. Reyss D (1971) Les canyons sous-marins de la mer Catalane: le rech du Cap et le rech Lacaze-Duthiers. III. Les peuplements de macrofaune benthique. Vie Milieu 22:529–613Google Scholar
  35. Rowe GT, Polloni PT, Haedrich RL (1982) The deep-sea macrobenthos on the continental margin of the northwest Atlantic Ocean. Deep-Sea Res 29:257–278Google Scholar
  36. Salat J, Cruzado A (1981) Masses d'eau dans la Méditerranée occidentale: Mer Catalane et eaux adjacentes. Rapp P-v Réun Commn int Explor scient Mer Méditerr 27:201–209Google Scholar
  37. Sardà F, Cartes JE, Company JB (1994) Spatio-temporal variations in megabenthos abundance in three different habitats of the Catalan deep-sea (Western Mediterranean). Mar Biol 120:211–219Google Scholar
  38. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  39. Tobar R, Sardà F (1987) Análisis de la evolución las capturas de gamba rosada, Aristeus antennatus (Risso, 1816) en los últimos decenios en Cataluña. Infmes téc Invest pesq 142:1–20Google Scholar
  40. Tobar R, Sardà F (1992) Annual and diel light cycle as a predictive factor in deep-water fisheries for the prawn Aristeus antennatus. Fish Res 15:169–179Google Scholar
  41. Tyler PA (1988) Seasonality in the deep sea. Oceanogr mar Biol A Rev 26:227–258Google Scholar
  42. Vinogradov ME, Tseitlin VB (1983) Deep-sea pelagic domain (aspects of bioenergetics). In: Rowe GT (ed) Deep-sea biology. The sea. Vol 8. John Wiley & Sons, New York, pp 123–165Google Scholar
  43. Wenner EL, Boesch DF (1979) Distribution patterns of epibenthic decapod Crustacea along the shelf-slope coenocline, middle Atlantic Bight, USA. Bull biol Soc Wash 3:106–133Google Scholar
  44. Whittaker RH, Fairbanks CW (1958) A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39:46–65Google Scholar
  45. Zariquiey Alvarez R (1968) Crustaceos decápods ibéricos. Investigación pesq 32:1–510Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. E. Cartes
    • 1
  • J. B. Company
    • 1
  • F. Maynou
    • 2
  1. 1.Institut de Ciències del Mar (CSIC)Barcelona
  2. 2.Centre des Pêches du GolfeMPOMonctonCanada

Personalised recommendations