Marine Biology

, Volume 120, Issue 2, pp 171–180

Home range and migrations of the living coelacanth Latimeria chalumnae

  • H. Fricke
  • K. Hissmann


The home range system of the coelacanth Latimeria chalumnae was investigated along 11 km coastline at Grande Comore, Western Indian Ocean, between 1987 and 1991. 67 individuals were identified on individual white dot patterns. The home range consisted of daytime caves where fish aggregated in groups of up to 14 individuals while at night individuals moved singly downwards to a depth of 250 to 300 m in search of food. Site fidelity of at least 5 yr was found. The coelacanths used several caves within their home ranges. Cave size, cave occupation rate, average and maximum group size and cave preferences were studied. Tracking experiments with ultrasonic transmitters revealed horizontal home ranges of at least 8 km width. Population estimates of 200 to 230 individuals at Grande Comore confirm earlier counts. Large home ranges and highly mobility in a topographically narrow habitat apparently favoured inbreeding of the small local island population.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruton MN, Armstrong MJ (1991) The demography of the coelacanth Latimeria chalumnae. Envir Biol Fish 32:301–311Google Scholar
  2. Emerick CM, Duncan RA (1982) Age progressive volcanism in the Comores Archipelago, western Indian Ocean and implications for Somali plate tectonics. Earth planet Sci Lett 60:415–428Google Scholar
  3. Enright JT (1977) Diurnal vertical migration: adaptive significance and timing, Part 1. Selective advantage-a metabolic model. Limnol Oceanogr 22:856–872Google Scholar
  4. Forey PL (1990) The coelacanth fish: progress and prospects. Sci Prog Oxf 74:53–67Google Scholar
  5. Fricke HW (1993) Die Biologie des Quastenflossers. 16-mm-Film 3210146. FWU Institut für Film und Bild, MünchenGoogle Scholar
  6. Fricke HW, Hissmann K (1990) Natural habitat of coelacanths. Nature, Lond 436:323–324Google Scholar
  7. Fricke HW, Hissmann K (1992) Locomotion, fin coordination and body form of the living coelacanth Latimeria chalumnae. Envir Biol Fish 34:329–356Google Scholar
  8. Fricke HW, Hissmann K, Schauer J, Reinicke O, Kasang L, Plante R (1991 a) Habitat and population size of the living coelacanth Latimeria chalumnae at Grande Comore. Envir Biol Fish 32:287–300Google Scholar
  9. Fricke HW, Plante R (1988) Habitat requirements of the living coelacanth Latimeria chalumnae at Grande Comore, Indian Ocean. Naturwissenschaften 75:149–151Google Scholar
  10. Fricke HW, Reinicke O, Hofer H, Nachtigall W (1987) Locomotion of the coelacanth Latimeria chalumnae in its natural environment. Nature, Lond 329:331–333Google Scholar
  11. Fricke HW, Schauer J, Hissmann K, Kasang L, Plante R (1991 b) Coelacanth Latimeria chalumnae aggregates in caves: first observations in their resting habitat and social behaviour. Envir Biol Fish 30:281–285Google Scholar
  12. Helfmann GS, Schultz ET (1984) Social transmission and behavioural traditions in a coral reef fish. Anim Behav 32:379–384Google Scholar
  13. Manly BFJ (1991) Randomization and Monte Carlo. Methods in biology. Chapmann and Hall, LondonGoogle Scholar
  14. McCosker JE (1979) Interred natural history of the living coelacanth Latimeria chalumnae. In: McCosker JE, Lagios MD (eds) The biology and physiology of the living coelacanth. Occ Pap Calif Acad Sci 134:17–24Google Scholar
  15. Millot J, Anthony J, Robineau D (1972) Etat commente des captures de Latimeria chalumnae Smith (Poisson, Crossopterygian, Coelacanthidae) effectuees jusqu' au mois d'octobre 1971. Bull Mus natn Hist nat Paris (Ser. 3, Zoologie) 39 (53):533–548Google Scholar
  16. Northcutt RG (1980) Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae). Anat Histol Embryol 9: 289–295Google Scholar
  17. Odor RK, Forsythe J, Webber DM, Wells J, Wells MJ (1993) Activity levels of Nautilus in the wild. Nature, Lond 362:626–628Google Scholar
  18. Romer AS (1959) Vergleichende Anatomie der Wirbeltiere. P. Parey Verlag, HamburgGoogle Scholar
  19. Rosen DE, Forey PL, Gardiner BG, Patterson C (1981) Lungfishes, tetrapods, paleontology and plesiomorphy. Bull Am Mus nat Hist 167:159–276Google Scholar
  20. Schartl M (1988) Sex chromosom restriction fragment length marker linked to melanoma determining TU-loci in Ziphophorus. Genetics 119:679–685Google Scholar
  21. Schliewen U, Fricke HW, Schartl M, Epplen JT, Pääbo S (1993) Which home for coelacanths? Nature, Lond 363:405–405Google Scholar
  22. Siegel S (1956) Nonparametric statistics for the behavioural sciences. McGraw-Hill Book Comp. New YorkGoogle Scholar
  23. Sokal RR, Rohlf FJ (1969) Biometry. WH Freeman & Comp., San FranciscoGoogle Scholar
  24. Swoboda H (1971) Knauers Buch der Modernen Statistik. Droemer Knauer, MünchenGoogle Scholar
  25. Warner RR (1988) Traditionality of mating-site preferences in a coral reef fish. Nature, Lond 353:719–721Google Scholar
  26. Westoll TS (1943) The origin of tetrapods. Biol Rev 18:78–98Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. Fricke
    • 1
  • K. Hissmann
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations