Advertisement

Journal of Materials Science

, Volume 30, Issue 11, pp 2785–2792 | Cite as

Protonic and oxygen-ion conduction in SrZrO3-based materials

  • J. A. Labrincha
  • F. M. B. Marques
  • J. R. Frade
Papers

Abstract

Strontium zirconate-based materials have been studied as potential high-temperature protonic conductors. Yttrium for zirconium substitution, and lanthanum for strontium substitution were selected to demonstrate that changes in composition can be used as a tool to design the properties. At temperatures below about 900 ° C, both yttrium-doped and undoped strontium zirconate are mostly protonic conductors at oxygen partial pressures below about 1 Pa, and mixed ionic and p-type conductors at higher pressures. The main ionic contribution changes from mostly protonic to oxygen-ion conduction with increasing temperature, which may affect the performance of electrochemical devices. Yttrium for zirconium substitution enhances both the electronic and ionic conductivities. Lanthanum for strontium substitution suppresses protonic conduction and gives rise to mixed oxygen-ion and n-type conduction in reducing conditions.

Keywords

Zirconium Strontium Yttrium Lanthanum Ionic Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Anthony and M. Foex, in “Proceedings of symposium on magnetic hydrodynamic electrical power”, Vol. 3, (National Agency for International Publication Inc., New York, 1966) p. 265Google Scholar
  2. 2.
    T. Noguchi, T. Okubo and O. Yonemochi, J. Am. Ceram. Soc. 52 (1969) 179.Google Scholar
  3. 3.
    H. Stetson and B. Schwartz, ibid. 44 (1961) 420.Google Scholar
  4. 4.
    N. Suriyayothin and N. G. Eror, J. Mater. Sci. 19 (1984) 2775.Google Scholar
  5. 5.
    M. Zborowska, M. Grylicki and J. Zborowski, Ceram. Int. 6 (1980) 99.Google Scholar
  6. 6.
    S. Shin, H. H. Huang, M. Ishigame and H. Iwahara, et al, Solid State Ionics 40/41 (1990) 910.Google Scholar
  7. 7.
    H. H. Huang, M. Ishigame and S. Shin, ibid. 47 (1991) 251.Google Scholar
  8. 8.
    T. Hibino, K. Muzutani, T. Yajima and H. Iwahara, ibid. 57 (1992) 303.Google Scholar
  9. 9.
    H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, ibid. 61 (1993) 65.Google Scholar
  10. 10.
    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, ibid. 3/4 (1981) 359.Google Scholar
  11. 11.
    T. Scherban and A. S. Nowick, ibid. 35 (1989) 189.Google Scholar
  12. 12.
    H. Iwahara, ibid. 52 (1992) 99.Google Scholar
  13. 13.
    N. Bonanos, ibid. 53–56 (1992) 967.Google Scholar
  14. 14.
    T. Yajima, H. Iwahara and H. Uchida, ibid. 47 (1991) 117.Google Scholar
  15. 15.
    J. F. Liu and A. S. Nowick, ibid. 50 (1992) 131.Google Scholar
  16. 16.
    A. Mitsui, M. Miyayama and H. Yanagida, ibid. 22 (1987) 213.Google Scholar
  17. 17.
    H. Iwahara, H. Uchida, K. Ogaki and H. Nagato, J. Electrochem. Soc. 138 (1991) 295.Google Scholar
  18. 18.
    T. Yajima, H. Kazeoka, T. Yoga and H. Iwahara, Solid State Ionics 47 (1991) 271.Google Scholar
  19. 19.
    R. L. Cook, J. J. Osborne, J. H. White, R. C. Macduff and A. F. Sammells, J. Electrochem. Soc. 139 (1992) L19.Google Scholar
  20. 20.
    M. J. Scholten, J. Schoonman J. C. Van Miltenburg and H. A. J. Oonk, Solid State Ionics 61 (1993) 83.Google Scholar
  21. 21.
    H. Iwahara, H. Uchida and S. Tanaka, ibid. 9/10 (1983) 1024.Google Scholar
  22. 22.
    H. Uchida, N. Maeda and H. Iwahara, ibid. 11 (1983) 117.Google Scholar
  23. 23.
    H.H. Huang, M. Ishigame and S. Shin, ibid. 47 (1991) 251.Google Scholar
  24. 24.
    S. Hamakawa, T. Hibino and H. Iwahara, J. Electrochem. Soc. 140 (1993) 459.Google Scholar
  25. 25.
    N. Taniguch1, K. Hatoh, J. Niikura and T. Gamo, Solid State Ionics 53–56 (1992) 998.Google Scholar
  26. 26.
    J. A. Labrincha, J. R. Frade and F. M. B. Marques, ibid. 61 (1993) 71.Google Scholar
  27. 27.
    Y. M. Kaikov and E. K. Sshalkova, J. Solid. State Chem. 97 (1992) 224.Google Scholar
  28. 28.
    T. Yajima and H. Iwahara, Solid State Ionics 50 (1992) 281.Google Scholar
  29. 29.
    F. M. B. Marques and G. P. Wirtz, J. Am. Ceram. Soc. 74 (1991) 598.Google Scholar
  30. 30.
    T. Norby, O. Dyrlie and P. Kofstad, ibid. 75 (1992) 1176.Google Scholar
  31. 31.
    T. Norby and P. Kofstad, ibid. 67 (1984) 786.Google Scholar
  32. 32.
    Idem, ibid. 69 (1986) 784.Google Scholar
  33. 33.
    M. P. van Dijk, K. J. De Vries and A. J. Burggraaf, Solid State Ionics 9/10 (1983) 913.Google Scholar
  34. 34.
    N. G. Eror and U. Balachandran, J. Solid State Chem. 40 (1981) 85.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. A. Labrincha
    • 1
  • F. M. B. Marques
    • 1
  • J. R. Frade
    • 1
  1. 1.Departamento de Engenharia Cerâmica e do VidroUniversidade de AveiroAveiroPortugal

Personalised recommendations